Galmés J, Conesa M À, Díaz-Espejo A, Mir A, Perdomo J A, Niinemets U, Flexas J
Research Group in Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma, Illes Balears, Spain.
Research Group in Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma, Illes Balears, Spain.
Plant Sci. 2014 Sep;226:61-70. doi: 10.1016/j.plantsci.2014.01.008. Epub 2014 Jan 31.
Because of its catalytic inefficiencies, Rubisco is the most obvious target for improvement to enhance the photosynthetic capacity of plants. Two hypotheses are tested in the present work: (1) existing Rubiscos have optimal kinetic properties to maximize photosynthetic carbon assimilation in existing higher plants; (2) current knowledge allows proposal of changes to kinetic properties to make Rubiscos more suited to changed conditions in chloroplasts that are likely to occur with climate change. The catalytic mechanism of Rubisco results in higher catalytic rates of carboxylation being associated with decreased affinity for CO2, so that selection for different environments involves a trade-off between these two properties. The simulations performed in this study confirm that the optimality of Rubisco kinetics depends on the species and the environmental conditions. In particular, environmental drivers affecting the CO2 availability for carboxylation (Cc) or directly shifting the photosynthetic limitations between Rubisco and RuBP regeneration determine to what extend Rubisco kinetics are optimally suited to maximize CO2 assimilation rate. In general, modeled values for optimal kinetic reflect the predominant environmental conditions currently encountered by the species in the field. Under future climatic conditions, photosynthetic CO2 assimilation will be limited by RuBP-regeneration, especially in the absence of water stress, the largest rise in [CO2] and the lowest increases in temperature. Under these conditions, the model predicts that optimal Rubisco should have high Sc/o and low kcat(c).
由于其催化效率低下,核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)是提高植物光合能力最明显的改进目标。本研究检验了两个假设:(1)现有的Rubisco具有最佳动力学特性,可使现有高等植物的光合碳同化最大化;(2)目前的知识允许提出改变动力学特性的建议,以使Rubisco更适合叶绿体中可能随气候变化而发生改变的条件。Rubisco的催化机制导致羧化反应的催化速率提高与对二氧化碳的亲和力降低相关联,因此针对不同环境的选择涉及这两种特性之间的权衡。本研究进行的模拟证实,Rubisco动力学的最优性取决于物种和环境条件。特别是,影响羧化反应二氧化碳可用性(Cc)或直接改变Rubisco与核酮糖-1,5-二磷酸(RuBP)再生之间光合限制的环境驱动因素,决定了Rubisco动力学在何种程度上最适合使二氧化碳同化率最大化。一般来说,最优动力学的模拟值反映了该物种目前在田间遇到的主要环境条件。在未来气候条件下,光合二氧化碳同化将受到RuBP再生的限制,特别是在没有水分胁迫、二氧化碳浓度上升幅度最大和温度上升幅度最小的情况下。在这些条件下,模型预测最优的Rubisco应该具有高的Sc/o和低的kcat(c)。