Hedlund Brian P, Dodsworth Jeremy A, Murugapiran Senthil K, Rinke Christian, Woyke Tanja
School of Life Sciences, University of Nevada Las Vegas, 4004, 4505 Maryland Parkway, Las Vegas, NV, 89154-4004, USA,
Extremophiles. 2014 Sep;18(5):865-75. doi: 10.1007/s00792-014-0664-7. Epub 2014 Aug 12.
Despite >130 years of microbial cultivation studies, many microorganisms remain resistant to traditional cultivation approaches, including numerous candidate phyla of bacteria and archaea. Unraveling the mysteries of these candidate phyla is a grand challenge in microbiology and is especially important in habitats where they are abundant, including some extreme environments and low-energy ecosystems. Over the past decade, parallel advances in DNA amplification, DNA sequencing and computing have enabled rapid progress on this problem, particularly through metagenomics and single-cell genomics. Although each approach suffers limitations, metagenomics and single-cell genomics are particularly powerful when combined synergistically. Studies focused on extreme environments have revealed the first substantial genomic information for several candidate phyla, encompassing putative acidophiles (Parvarchaeota), halophiles (Nanohaloarchaeota), thermophiles (Acetothermia, Aigarchaeota, Atribacteria, Calescamantes, Korarchaeota, and Fervidibacteria), and piezophiles (Gracilibacteria). These data have enabled insights into the biology of these organisms, including catabolic and anabolic potential, molecular adaptations to life in extreme environments, unique genomic features such as stop codon reassignments, and predictions about cell ultrastructure. In addition, the rapid expansion of genomic coverage enabled by these studies continues to yield insights into the early diversification of microbial lineages and the relationships within and between the phyla of Bacteria and Archaea. In the next 5 years, the genomic foliage within the tree of life will continue to grow and the study of yet-uncultivated candidate phyla will firmly transition into the post-genomic era.
尽管微生物培养研究已有130多年历史,但许多微生物仍对传统培养方法具有抗性,包括众多细菌和古菌的候选门类。揭开这些候选门类的奥秘是微生物学领域的一项重大挑战,在它们大量存在的栖息地,包括一些极端环境和低能量生态系统中,这一点尤为重要。在过去十年中,DNA扩增、DNA测序和计算技术的并行发展使得在这个问题上取得了快速进展,特别是通过宏基因组学和单细胞基因组学。尽管每种方法都有局限性,但宏基因组学和单细胞基因组学协同结合时特别强大。针对极端环境的研究揭示了几个候选门类的首批大量基因组信息,包括假定的嗜酸菌(微小古菌门)、嗜盐菌(纳米嗜盐古菌门)、嗜热菌(乙酸热菌门、艾氏古菌门、无名杆菌门、卡氏菌门、泉古菌门和嗜热栖热菌纲)和嗜压菌(纤细杆菌门)。这些数据有助于深入了解这些生物的生物学特性,包括分解代谢和合成代谢潜力、对极端环境中生命的分子适应性、独特的基因组特征(如终止密码子重新分配)以及对细胞超微结构的预测。此外,这些研究实现的基因组覆盖范围的迅速扩大,继续为微生物谱系的早期分化以及细菌和古菌各门类内部和之间的关系提供深入见解。在未来5年里,生命之树的基因组枝叶将继续生长,对尚未培养的候选门类的研究将坚定地迈入后基因组时代。