Suppr超能文献

十二指肠腔内营养感知

Duodenal luminal nutrient sensing.

作者信息

Rønnestad Ivar, Akiba Yasutada, Kaji Izumi, Kaunitz Jonathan D

机构信息

Department of Medicine, School of Medicine, University of California, Los Angeles, USA; Department of Biology, University of Bergen, N5020 Bergen, Norway.

Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, USA; Department of Medicine, School of Medicine, University of California, Los Angeles, USA; Brentwood Biomedical Research Institute, Los Angeles, CA 90073, USA.

出版信息

Curr Opin Pharmacol. 2014 Dec;19:67-75. doi: 10.1016/j.coph.2014.07.010. Epub 2014 Aug 9.

Abstract

The gastrointestinal mucosa is exposed to numerous chemical substances and microorganisms, including macronutrients, micronutrients, bacteria, endogenous ions, and proteins. The regulation of mucosal protection, digestion, absorption and motility is signaled in part by luminal solutes. Therefore, luminal chemosensing is an important mechanism enabling the mucosa to monitor luminal conditions, such as pH, ion concentrations, nutrient quantity, and microflora. The duodenal mucosa shares luminal nutrient receptors with lingual taste receptors in order to detect the five basic tastes, in addition to essential nutrients, and unwanted chemicals. The recent 'de-orphanization' of nutrient sensing G protein-coupled receptors provides an essential component of the mechanism by which the mucosa senses luminal nutrients. In this review, we will update the mechanisms of and underlying physiological and pathological roles in luminal nutrient sensing, with a main focus on the duodenal mucosa.

摘要

胃肠道黏膜会接触到多种化学物质和微生物,包括大量营养素、微量营养素、细菌、内源性离子和蛋白质。管腔溶质在一定程度上参与了黏膜保护、消化、吸收和蠕动的调节信号传递。因此,管腔化学感应是一种重要机制,使黏膜能够监测管腔状况,如pH值、离子浓度、营养物质数量和微生物群落。十二指肠黏膜与舌部味觉感受器共享管腔营养感受器,以检测除必需营养素外的五种基本味觉以及有害化学物质。最近对营养感应G蛋白偶联受体的“去孤儿化”揭示了黏膜感知管腔营养物质机制的一个重要组成部分。在本综述中,我们将更新管腔营养感应的机制及其潜在的生理和病理作用,主要聚焦于十二指肠黏膜。

相似文献

1
Duodenal luminal nutrient sensing.
Curr Opin Pharmacol. 2014 Dec;19:67-75. doi: 10.1016/j.coph.2014.07.010. Epub 2014 Aug 9.
2
Duodenal chemosensing and mucosal defenses.
Digestion. 2011;83 Suppl 1(Suppl 1):25-31. doi: 10.1159/000323401. Epub 2011 Mar 10.
3
Luminal chemosensing in the duodenal mucosa.
Acta Physiol (Oxf). 2011 Jan;201(1):77-84. doi: 10.1111/j.1748-1716.2010.02149.x.
4
Duodenal luminal chemosensing; acid, ATP, and nutrients.
Curr Pharm Des. 2014;20(16):2760-5. doi: 10.2174/13816128113199990565.
5
Luminal chemosensing in the gastroduodenal mucosa.
Curr Opin Gastroenterol. 2017 Nov;33(6):439-445. doi: 10.1097/MOG.0000000000000396.
6
Gastroduodenal mucosal defense mechanisms.
Curr Opin Gastroenterol. 2015 Nov;31(6):486-91. doi: 10.1097/MOG.0000000000000211.
7
Luminal L-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats.
Am J Physiol Gastrointest Liver Physiol. 2009 Oct;297(4):G781-91. doi: 10.1152/ajpgi.90605.2008. Epub 2009 Jul 30.
9
Duodenal chemosensing.
Curr Opin Gastroenterol. 2018 Nov;34(6):422-427. doi: 10.1097/MOG.0000000000000476.
10
Short-chain fatty acids augment rat duodenal mucosal barrier function.
Exp Physiol. 2017 Jul 1;102(7):791-803. doi: 10.1113/EP086110. Epub 2017 May 25.

引用本文的文献

1
Comprehensive Treatment of Functional Dyspepsia Using Traditional Chinese Medicine: A Review Based on Pathophysiological Perspectives.
Drug Des Devel Ther. 2025 Jun 24;19:5349-5367. doi: 10.2147/DDDT.S514042. eCollection 2025.
5
The Role of Leaky Gut in Functional Dyspepsia.
Front Neurosci. 2022 Mar 29;16:851012. doi: 10.3389/fnins.2022.851012. eCollection 2022.
8
Uric acid extrarenal excretion: the gut microbiome as an evident yet understated factor in gout development.
Rheumatol Int. 2022 Mar;42(3):403-412. doi: 10.1007/s00296-021-05007-x. Epub 2021 Sep 29.
9
Effects of Short-Term Fasting on mRNA Expression of Ghrelin and the Peptide Transporters PepT1 and 2 in Atlantic Salmon ().
Front Physiol. 2021 Jun 21;12:666670. doi: 10.3389/fphys.2021.666670. eCollection 2021.

本文引用的文献

1
The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing.
PLoS One. 2014 Feb 26;9(2):e89977. doi: 10.1371/journal.pone.0089977. eCollection 2014.
2
Feeding-dependent activation of enteric cells and sensory neurons by lymphatic fluid: evidence for a neurolymphocrine system.
Am J Physiol Gastrointest Liver Physiol. 2014 Apr 15;306(8):G686-98. doi: 10.1152/ajpgi.00433.2013. Epub 2014 Feb 27.
3
Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans.
Am J Physiol Gastrointest Liver Physiol. 2014 Apr 1;306(7):G622-30. doi: 10.1152/ajpgi.00372.2013. Epub 2014 Feb 13.
4
Glutamate prevents intestinal atrophy via luminal nutrient sensing in a mouse model of total parenteral nutrition.
FASEB J. 2014 May;28(5):2073-87. doi: 10.1096/fj.13-238311. Epub 2014 Feb 4.
5
Different sucrose-isomaltase response of Caco-2 cells to glucose and maltose suggests dietary maltose sensing.
J Clin Biochem Nutr. 2014 Jan;54(1):55-60. doi: 10.3164/jcbn.13-59. Epub 2013 Dec 20.
8
Gastrointestinal HCO3- transport and epithelial protection in the gut: new techniques, transport pathways and regulatory pathways.
Curr Opin Pharmacol. 2013 Dec;13(6):900-8. doi: 10.1016/j.coph.2013.10.001. Epub 2013 Oct 25.
9
Extrasensory perception: odorant and taste receptors beyond the nose and mouth.
Pharmacol Ther. 2014 Apr;142(1):41-61. doi: 10.1016/j.pharmthera.2013.11.004. Epub 2013 Nov 23.
10
A tag to track short chain fatty acid sensors.
Endocrinology. 2013 Oct;154(10):3492-4. doi: 10.1210/en.2013-1789.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验