Suppr超能文献

迈向多形性胶质母细胞瘤生物标志物的开发:蛋白质组学视角

Towards developing biomarkers for glioblastoma multiforme: a proteomics view.

作者信息

Jayaram Savita, Gupta Manoj Kumar, Polisetty Ravindra Varma, Cho William C S, Sirdeshmukh Ravi

机构信息

Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India.

出版信息

Expert Rev Proteomics. 2014 Oct;11(5):621-39. doi: 10.1586/14789450.2014.939634. Epub 2014 Aug 13.

Abstract

Glioblastoma multiforme (GBM) is one of the most aggressive and lethal forms of the primary brain tumors. With predominance of tumor heterogeneity and emergence of new subtypes, new approaches are needed to develop tissue-based markers for tumor typing or circulatory markers to serve as blood-based assays. Multi-omics data integration for GBM tissues would offer new insights on the molecular view of GBM pathogenesis useful to identify biomarker panels. On the other hand, mapping differentially expressed tissue proteins for their secretory potential through bioinformatics analysis or analysis of the tumor cell secretome or tumor exosomes would enhance our understanding of the tumor microenvironment and prospects for targeting circulatory biomarkers. In this review, the authors first present potential biomarker candidates for GBM that have been reported and then focus on plausible pipelines for multi-omic data integration to identify additional, high-confidence molecular panels for clinical applications in GBM.

摘要

多形性胶质母细胞瘤(GBM)是原发性脑肿瘤中最具侵袭性和致命性的类型之一。由于肿瘤异质性占主导以及新亚型的出现,需要新的方法来开发用于肿瘤分型的组织标志物或作为基于血液检测的循环标志物。对GBM组织进行多组学数据整合将为GBM发病机制的分子观点提供新见解,有助于识别生物标志物组合。另一方面,通过生物信息学分析、肿瘤细胞分泌组或肿瘤外泌体分析来绘制差异表达组织蛋白的分泌潜力,将增进我们对肿瘤微环境的理解以及靶向循环生物标志物的前景。在本综述中,作者首先介绍已报道的GBM潜在生物标志物候选物,然后重点关注多组学数据整合的合理流程,以识别用于GBM临床应用的其他高可信度分子组合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验