Suppr超能文献

通过氢键持续性反映的寡聚甘氨酸、寡聚丙氨酸和寡聚β-丙氨酸十二聚体的螺旋稳定性。

Helix stability of oligoglycine, oligoalanine, and oligo-β-alanine dodecamers reflected by hydrogen-bond persistence.

作者信息

Liu Chengyu, Ponder Jay W, Marshall Garland R

机构信息

Department of Chemistry, Washington University, St. Louis, Missouri, 63130.

出版信息

Proteins. 2014 Nov;82(11):3043-61. doi: 10.1002/prot.24665. Epub 2014 Sep 20.

Abstract

Helices are important structural/recognition elements in proteins and peptides. Stability and conformational differences between helices composed of α- and β-amino acids as scaffolds for mimicry of helix recognition has become a theme in medicinal chemistry. Furthermore, helices formed by β-amino acids are experimentally more stable than those formed by α-amino acids. This is paradoxical because the larger sizes of the hydrogen-bonding rings required by the extra methylene groups should lead to entropic destabilization. In this study, molecular dynamics simulations using the second-generation force field, AMOEBA (Ponder, J.W., et al., Current status of the AMOEBA polarizable force field. J Phys Chem B, 2010. 114(8): p. 2549-64.) explored the stability and hydrogen-bonding patterns of capped oligo-β-alanine, oligoalanine, and oligoglycine dodecamers in water. The MD simulations showed that oligo-β-alanine has strong acceptor+2 hydrogen bonds, but surprisingly did not contain a large content of 3(12) -helical structures, possibly due to the sparse distribution of the 3(12) -helical structure and other structures with acceptor+2 hydrogen bonds. On the other hand, despite its backbone flexibility, the β-alanine dodecamer had more stable and persistent <3.0 Å hydrogen bonds. Its structure was dominated more by multicentered hydrogen bonds than either oligoglycine or oligoalanine helices. The 3(1) (PII) helical structure, prevalent in oligoglycine and oligoalanine, does not appear to be stable in oligo-β-alanine indicating its competition with other structures (stacking structure as indicated by MD analyses). These differences are among the factors that shape helical structural preferences and the relative stabilities of these three oligopeptides.

摘要

螺旋结构是蛋白质和肽中重要的结构/识别元件。以α-氨基酸和β-氨基酸为支架构建的螺旋结构之间的稳定性和构象差异,作为模拟螺旋识别的手段,已成为药物化学中的一个研究主题。此外,由β-氨基酸形成的螺旋在实验中比由α-氨基酸形成的螺旋更稳定。这似乎自相矛盾,因为额外的亚甲基所需要的氢键环更大,应该会导致熵的不稳定。在本研究中,使用第二代力场AMOEBA(Ponder, J.W.等人,《AMOEBA可极化力场的当前状态》。《物理化学杂志B》,2010年。114(8):第2549 - 2564页。)进行分子动力学模拟,探索了封端的寡聚-β-丙氨酸、寡聚丙氨酸和寡聚甘氨酸十二聚体在水中的稳定性和氢键模式。分子动力学模拟表明,寡聚-β-丙氨酸具有很强的受体 +2 氢键,但令人惊讶的是,它并不含有大量的3(12)-螺旋结构,这可能是由于3(12)-螺旋结构和其他具有受体 +2 氢键的结构分布稀疏。另一方面,尽管β-丙氨酸十二聚体的主链具有灵活性,但其<3.0 Å的氢键更稳定且持久。与寡聚甘氨酸或寡聚丙氨酸螺旋相比,其结构更多地由多中心氢键主导。在寡聚甘氨酸和寡聚丙氨酸中普遍存在的3(1)(PII)螺旋结构,在寡聚-β-丙氨酸中似乎不稳定,这表明它与其他结构(如分子动力学分析所示的堆积结构)存在竞争。这些差异是影响这三种寡肽螺旋结构偏好和相对稳定性的因素之一。

相似文献

2
High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.
PLoS One. 2015 Apr 20;10(4):e0123146. doi: 10.1371/journal.pone.0123146. eCollection 2015.
3
Free energy determinants of secondary structure formation: I. alpha-Helices.
J Mol Biol. 1995 Sep 22;252(3):351-65. doi: 10.1006/jmbi.1995.0502.
4
Structural properties of hydration shell around various conformations of simple polypeptides.
J Phys Chem B. 2010 Apr 8;114(13):4536-50. doi: 10.1021/jp9086199.
7
Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.
Biophys J. 2003 Nov;85(5):3187-93. doi: 10.1016/S0006-3495(03)74736-5.
8
Glycine Perturbs Local and Global Conformational Flexibility of a Transmembrane Helix.
Biochemistry. 2018 Feb 27;57(8):1326-1337. doi: 10.1021/acs.biochem.7b01197. Epub 2018 Feb 9.
9
Exploiting diverse stereochemistry of β-amino acids: toward a rational design of sheet-forming β-peptide systems.
Amino Acids. 2012 Aug;43(2):735-49. doi: 10.1007/s00726-011-1124-7. Epub 2011 Nov 6.

引用本文的文献

1
Accurate Host-Guest Binding Free Energies Using the AMOEBA Polarizable Force Field.
J Chem Inf Model. 2023 May 8;63(9):2769-2782. doi: 10.1021/acs.jcim.3c00155. Epub 2023 Apr 19.
2
Polypeptide Chain Growth Mechanisms and Secondary Structure Formation in Glycine Gas-Phase Deposition on Silica Surfaces.
J Phys Chem B. 2023 Jan 26;127(3):673-684. doi: 10.1021/acs.jpcb.2c07382. Epub 2023 Jan 13.
3
Absolute binding free energies for the SAMPL6 cucurbit[8]uril host-guest challenge via the AMOEBA polarizable force field.
J Comput Aided Mol Des. 2018 Oct;32(10):1087-1095. doi: 10.1007/s10822-018-0147-5. Epub 2018 Oct 15.
4
High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.
PLoS One. 2015 Apr 20;10(4):e0123146. doi: 10.1371/journal.pone.0123146. eCollection 2015.

本文引用的文献

1
Design and Evolution of a Miniature Bcl-2 Binding Protein.
Angew Chem Int Ed Engl. 2001 Oct 15;40(20):3806-3809. doi: 10.1002/1521-3773(20011015)40:20<3806::AID-ANIE3806>3.0.CO;2-B.
2
α-Helix mimicry with α/β-peptides.
Methods Enzymol. 2013;523:407-29. doi: 10.1016/B978-0-12-394292-0.00019-9.
3
Mixed 14/16 helices in the gas phase: conformation-specific spectroscopy of Z-(Gly)n, n = 1, 3, 5.
J Am Chem Soc. 2012 Oct 17;134(41):17186-201. doi: 10.1021/ja306652c. Epub 2012 Oct 5.
4
Molecular dynamics of β-hairpin models of epigenetic recognition motifs.
J Am Chem Soc. 2012 Sep 26;134(38):15970-8. doi: 10.1021/ja306803v. Epub 2012 Sep 17.
5
Synthesis of acyltrifluoroborates.
Org Lett. 2012 Apr 20;14(8):2138-41. doi: 10.1021/ol300668m. Epub 2012 Apr 4.
6
Limiting assumptions in structure-based design: binding entropy.
J Comput Aided Mol Des. 2012 Jan;26(1):3-8. doi: 10.1007/s10822-011-9494-1. Epub 2012 Jan 3.
7
Synthesis of the phenylpyridal scaffold as a helical peptide mimetic.
Chemistry. 2010 Jul 26;16(28):8439-45. doi: 10.1002/chem.201000315.
8
Raman studies of solution polyglycine conformations.
J Phys Chem B. 2010 May 20;114(19):6636-41. doi: 10.1021/jp100082n.
9
Current status of the AMOEBA polarizable force field.
J Phys Chem B. 2010 Mar 4;114(8):2549-64. doi: 10.1021/jp910674d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验