Liu Chengyu, Ponder Jay W, Marshall Garland R
Department of Chemistry, Washington University, St. Louis, Missouri, 63130.
Proteins. 2014 Nov;82(11):3043-61. doi: 10.1002/prot.24665. Epub 2014 Sep 20.
Helices are important structural/recognition elements in proteins and peptides. Stability and conformational differences between helices composed of α- and β-amino acids as scaffolds for mimicry of helix recognition has become a theme in medicinal chemistry. Furthermore, helices formed by β-amino acids are experimentally more stable than those formed by α-amino acids. This is paradoxical because the larger sizes of the hydrogen-bonding rings required by the extra methylene groups should lead to entropic destabilization. In this study, molecular dynamics simulations using the second-generation force field, AMOEBA (Ponder, J.W., et al., Current status of the AMOEBA polarizable force field. J Phys Chem B, 2010. 114(8): p. 2549-64.) explored the stability and hydrogen-bonding patterns of capped oligo-β-alanine, oligoalanine, and oligoglycine dodecamers in water. The MD simulations showed that oligo-β-alanine has strong acceptor+2 hydrogen bonds, but surprisingly did not contain a large content of 3(12) -helical structures, possibly due to the sparse distribution of the 3(12) -helical structure and other structures with acceptor+2 hydrogen bonds. On the other hand, despite its backbone flexibility, the β-alanine dodecamer had more stable and persistent <3.0 Å hydrogen bonds. Its structure was dominated more by multicentered hydrogen bonds than either oligoglycine or oligoalanine helices. The 3(1) (PII) helical structure, prevalent in oligoglycine and oligoalanine, does not appear to be stable in oligo-β-alanine indicating its competition with other structures (stacking structure as indicated by MD analyses). These differences are among the factors that shape helical structural preferences and the relative stabilities of these three oligopeptides.
螺旋结构是蛋白质和肽中重要的结构/识别元件。以α-氨基酸和β-氨基酸为支架构建的螺旋结构之间的稳定性和构象差异,作为模拟螺旋识别的手段,已成为药物化学中的一个研究主题。此外,由β-氨基酸形成的螺旋在实验中比由α-氨基酸形成的螺旋更稳定。这似乎自相矛盾,因为额外的亚甲基所需要的氢键环更大,应该会导致熵的不稳定。在本研究中,使用第二代力场AMOEBA(Ponder, J.W.等人,《AMOEBA可极化力场的当前状态》。《物理化学杂志B》,2010年。114(8):第2549 - 2564页。)进行分子动力学模拟,探索了封端的寡聚-β-丙氨酸、寡聚丙氨酸和寡聚甘氨酸十二聚体在水中的稳定性和氢键模式。分子动力学模拟表明,寡聚-β-丙氨酸具有很强的受体 +2 氢键,但令人惊讶的是,它并不含有大量的3(12)-螺旋结构,这可能是由于3(12)-螺旋结构和其他具有受体 +2 氢键的结构分布稀疏。另一方面,尽管β-丙氨酸十二聚体的主链具有灵活性,但其<3.0 Å的氢键更稳定且持久。与寡聚甘氨酸或寡聚丙氨酸螺旋相比,其结构更多地由多中心氢键主导。在寡聚甘氨酸和寡聚丙氨酸中普遍存在的3(1)(PII)螺旋结构,在寡聚-β-丙氨酸中似乎不稳定,这表明它与其他结构(如分子动力学分析所示的堆积结构)存在竞争。这些差异是影响这三种寡肽螺旋结构偏好和相对稳定性的因素之一。