Suppr超能文献

主链水合作用和盐桥形成在溶液中α-螺旋稳定性中的作用。

Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.

作者信息

Ghosh Tuhin, Garde Shekhar, García Angel E

机构信息

Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

出版信息

Biophys J. 2003 Nov;85(5):3187-93. doi: 10.1016/S0006-3495(03)74736-5.

Abstract

We test molecular level hypotheses for the high thermal stability of alpha-helical conformations of alanine-based peptides by performing detailed atomistic simulations of a 20-amino-acid peptide with explicit treatment of water. To assess the contribution of large side chains to alpha-helix stability through backbone desolvation and salt-bridge formation, we simulate the alanine-rich peptide, Ac-YAEAAKAAEAAKAAEAAKAF-Nme, referred to as the EK peptide, that has three pairs of "i, i + 3" glutamic acid(-) and lysine(+) substitutions. Efficient configurational sampling of the EK peptide over a wide temperature range enabled by the replica exchange molecular dynamics technique allows characterization of the stability of alpha-helix with respect to heat-induced unfolding. We find that near ambient temperatures, the EK peptide predominately samples alpha-helical configurations with 80% fractional helicity at 300 K. The helix melts over a broad range of temperatures with melting temperature, T(m), equal to 350 K, that is significantly higher than the T(m) of a 21-residue polyalanine peptide, A(21). Salt-bridges between oppositely charged Glu(-) and Lys(+) side chains can, in principle, provide thermal stability to alpha-helical conformers. For the specific EK peptide sequence, we observe infrequent formation of Glu-Lys salt-bridges (with approximately 10-20% probability) and therefore we conclude that salt-bridge formation does not contribute significantly to the EK peptide's helical stability. However, lysine side chains are found to shield specific "i, i + 4" backbone hydrogen bonds from water, indicating that large side-chain substituents can play an important role in stabilizing alpha-helical configurations of short peptides in aqueous solution through mediation of water access to backbone hydrogen bonds. These observations have implications on molecular engineering of peptides and biomolecules in the design of their thermostable variants where the shielding mechanism can act in concert with other factors such as salt-bridge formation, thereby increasing thermal stability considerably.

摘要

我们通过对一个含有20个氨基酸的肽进行详细的原子模拟,并对水进行显式处理,来检验关于丙氨酸基肽的α-螺旋构象具有高热稳定性的分子水平假设。为了评估大侧链通过主链去溶剂化和盐桥形成对α-螺旋稳定性的贡献,我们模拟了富含丙氨酸的肽Ac-YAEAAKAAEAAKAAEAAKAF-Nme,简称为EK肽,它有三对“i,i + 3”谷氨酸(-)和赖氨酸(+)取代。通过复制交换分子动力学技术实现的在宽温度范围内对EK肽的高效构型采样,使得能够表征α-螺旋相对于热诱导解折叠的稳定性。我们发现,在接近环境温度时,EK肽主要采样α-螺旋构型,在300 K时螺旋分数为80%。螺旋在很宽的温度范围内熔化,熔化温度T(m)等于350 K,这明显高于21个残基的聚丙氨酸肽A(21)的T(m)。带相反电荷的Glu(-)和Lys(+)侧链之间的盐桥原则上可以为α-螺旋构象提供热稳定性。对于特定的EK肽序列,我们观察到Glu-Lys盐桥形成的频率很低(概率约为10 - 20%),因此我们得出结论,盐桥形成对EK肽的螺旋稳定性贡献不大。然而,发现赖氨酸侧链可以保护特定的“i,i + 4”主链氢键不被水接触,这表明大侧链取代基可以通过介导水与主链氢键的接触,在稳定水溶液中短肽的α-螺旋构型方面发挥重要作用。这些观察结果对肽和生物分子的分子工程在设计其热稳定变体方面具有启示意义,其中屏蔽机制可以与其他因素如盐桥形成协同作用,从而显著提高热稳定性。

相似文献

1
Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.
Biophys J. 2003 Nov;85(5):3187-93. doi: 10.1016/S0006-3495(03)74736-5.
2
Salt-specific stability and denaturation of a short salt-bridge-forming alpha-helix.
J Am Chem Soc. 2008 Oct 22;130(42):14000-7. doi: 10.1021/ja805562g. Epub 2008 Sep 27.
3
Examination of the folding of a short alanine-based helical peptide with salt bridges using molecular dynamics simulation.
J Phys Chem B. 2007 Apr 5;111(13):3508-14. doi: 10.1021/jp067637a. Epub 2007 Mar 15.
4
5
Alpha-helical stabilization by side chain shielding of backbone hydrogen bonds.
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2782-7. doi: 10.1073/pnas.042496899. Epub 2002 Feb 26.
6
Molecular dynamics simulations of peptides from the central domain of smooth muscle caldesmon.
J Biomol Struct Dyn. 2004 Feb;21(4):555-66. doi: 10.1080/07391102.2004.10506948.
7
Competing interactions contributing to alpha-helical stability in aqueous solution.
Protein Sci. 1995 Apr;4(4):603-12. doi: 10.1002/pro.5560040402.
8
Salt-specific stability of short and charged alanine-based alpha-helices.
J Phys Chem B. 2009 Dec 31;113(52):16689-94. doi: 10.1021/jp9077932.
9
Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design.
Proc Natl Acad Sci U S A. 1987 Dec;84(24):8898-902. doi: 10.1073/pnas.84.24.8898.
10
Effects of pH and temperature on the structural and thermodynamic character of alpha-syn12 peptide in aqueous solution.
J Biomol Struct Dyn. 2010 Dec;28(3):343-53. doi: 10.1080/07391102.2010.10507364.

引用本文的文献

1
Backbone Hydration of -Helical Peptides: Hydrogen-Bonding and Surface Hydrophobicity/Hydrophilicity.
Mol Phys. 2024;122(21-22). doi: 10.1080/00268976.2024.2323637. Epub 2024 Mar 5.
2
Effects of Charge Sequence Pattern and Lysine-to-Arginine Substitution on the Structural Stability of Bioinspired Polyampholytes.
Biomacromolecules. 2024 May 13;25(5):2838-2851. doi: 10.1021/acs.biomac.4c00002. Epub 2024 Apr 3.
4
Immunoinformatics Study: Multi-Epitope Based Vaccine Design from SARS-CoV-2 Spike Glycoprotein.
Vaccines (Basel). 2023 Feb 9;11(2):399. doi: 10.3390/vaccines11020399.
5
Engineering enhanced thermostability into the nitrile hydratase.
Curr Res Struct Biol. 2022 Aug 19;4:256-270. doi: 10.1016/j.crstbi.2022.07.002. eCollection 2022.
6
Benchmarking Adaptive Steered Molecular Dynamics (ASMD) on CHARMM Force Fields.
Chemphyschem. 2022 Sep 5;23(17):e202200175. doi: 10.1002/cphc.202200175. Epub 2022 Jul 5.
7
Variants in cause progressive myoclonus epilepsy and developmental and epileptic encephalopathy.
Brain Commun. 2021 Oct 18;3(4):fcab245. doi: 10.1093/braincomms/fcab245. eCollection 2021.
8
Energetics and structure of alanine-rich α-helices via adaptive steered molecular dynamics.
Biophys J. 2021 May 18;120(10):2009-2018. doi: 10.1016/j.bpj.2021.03.017. Epub 2021 Mar 26.
9
Novel Amino Acid Assembly in the Silk Tubes of Arid-Adapted Segestriid Spiders.
J Chem Ecol. 2020 Jan;46(1):48-62. doi: 10.1007/s10886-019-01127-8. Epub 2019 Dec 7.

本文引用的文献

1
Helix propensities of short peptides: molecular dynamics versus bioinformatics.
Proteins. 2003 Mar 1;50(4):552-62. doi: 10.1002/prot.10252.
2
A hierarchic approach to the design of hexameric helical barrels.
J Mol Biol. 2002 May 24;319(1):243-53. doi: 10.1016/S0022-2836(02)00233-4.
5
Designing a 20-residue protein.
Nat Struct Biol. 2002 Jun;9(6):425-30. doi: 10.1038/nsb798.
6
Helix formation via conformation diffusion search.
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2788-93. doi: 10.1073/pnas.052700099. Epub 2002 Feb 26.
7
Alpha-helical stabilization by side chain shielding of backbone hydrogen bonds.
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2782-7. doi: 10.1073/pnas.042496899. Epub 2002 Feb 26.
10
Exploring the energy landscape of a beta hairpin in explicit solvent.
Proteins. 2001 Feb 15;42(3):345-54. doi: 10.1002/1097-0134(20010215)42:3<345::aid-prot50>3.0.co;2-h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验