Suppr超能文献

古菌和细菌中膜差异的生物能量基础。

A bioenergetic basis for membrane divergence in archaea and bacteria.

作者信息

Sojo Víctor, Pomiankowski Andrew, Lane Nick

机构信息

Department of Genetics, Evolution and Environment, University College London, London, United Kingdom; CoMPLEX, University College London, London, United Kingdom.

出版信息

PLoS Biol. 2014 Aug 12;12(8):e1001926. doi: 10.1371/journal.pbio.1001926. eCollection 2014 Aug.

Abstract

Membrane bioenergetics are universal, yet the phospholipid membranes of archaea and bacteria-the deepest branches in the tree of life-are fundamentally different. This deep divergence in membrane chemistry is reflected in other stark differences between the two domains, including ion pumping and DNA replication. We resolve this paradox by considering the energy requirements of the last universal common ancestor (LUCA). We develop a mathematical model based on the premise that LUCA depended on natural proton gradients. Our analysis shows that such gradients can power carbon and energy metabolism, but only in leaky cells with a proton permeability equivalent to fatty acid vesicles. Membranes with lower permeability (equivalent to modern phospholipids) collapse free-energy availability, precluding exploitation of natural gradients. Pumping protons across leaky membranes offers no advantage, even when permeability is decreased 1,000-fold. We hypothesize that a sodium-proton antiporter (SPAP) provided the first step towards modern membranes. SPAP increases the free energy available from natural proton gradients by ∼60%, enabling survival in 50-fold lower gradients, thereby facilitating ecological spread and divergence. Critically, SPAP also provides a steadily amplifying advantage to proton pumping as membrane permeability falls, for the first time favoring the evolution of ion-tight phospholipid membranes. The phospholipids of archaea and bacteria incorporate different stereoisomers of glycerol phosphate. We conclude that the enzymes involved took these alternatives by chance in independent populations that had already evolved distinct ion pumps. Our model offers a quantitatively robust explanation for why membrane bioenergetics are universal, yet ion pumps and phospholipid membranes arose later and independently in separate populations. Our findings elucidate the paradox that archaea and bacteria share DNA transcription, ribosomal translation, and ATP synthase, yet differ in equally fundamental traits that depend on the membrane, including DNA replication.

摘要

膜生物能量学具有普遍性,然而古菌和细菌的磷脂膜——生命之树中最古老的分支——却有着根本的不同。膜化学上的这种深刻差异也反映在这两个域之间的其他显著差异中,包括离子泵浦和DNA复制。我们通过考虑最后一个普遍共同祖先(LUCA)的能量需求来解决这一矛盾。我们基于LUCA依赖于自然质子梯度这一前提开发了一个数学模型。我们的分析表明,这样的梯度可以为碳和能量代谢提供动力,但前提是细胞具有质子渗透性,相当于脂肪酸囊泡的渗透性。渗透性较低的膜(相当于现代磷脂)会使自由能可用性降低,从而无法利用自然梯度。即使渗透性降低1000倍,将质子泵过渗透性高的膜也没有优势。我们推测,钠-质子反向转运蛋白(SPAP)是迈向现代膜的第一步。SPAP使自然质子梯度产生的自由能增加约60%,使细胞能够在低50倍的梯度下生存,从而促进生态扩散和分化。至关重要的是,随着膜渗透性的降低,SPAP也为质子泵浦提供了一个不断放大的优势,首次有利于离子紧密的磷脂膜的进化。古菌和细菌中的磷脂含有不同的磷酸甘油立体异构体。我们得出结论,相关酶在已经进化出不同离子泵的独立群体中偶然采用了这些变体。我们的模型为为什么膜生物能量学具有普遍性,但离子泵和磷脂膜后来在不同群体中独立出现提供了一个定量上可靠的解释。我们的研究结果阐明了一个矛盾,即古菌和细菌共享DNA转录、核糖体翻译和ATP合酶,但在同样依赖于膜的基本特征上却有所不同,包括DNA复制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06c8/4130499/cfc841021173/pbio.1001926.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验