Roche Benjamin, Drake John M, Brown Justin, Stallknecht David E, Bedford Trevor, Rohani Pejman
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America; Unité de Modélisation Mathématique et Informatique des Systèmes Complexes (IRD/UMPC 209), Bondy, France.
Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America.
PLoS Biol. 2014 Aug 12;12(8):e1001931. doi: 10.1371/journal.pbio.1001931. eCollection 2014 Aug.
Avian influenza viruses (AIVs) have been pivotal to the origination of human pandemic strains. Despite their scientific and public health significance, however, there remains much to be understood about the ecology and evolution of AIVs in wild birds, where major pools of genetic diversity are generated and maintained. Here, we present comparative phylodynamic analyses of human and AIVs in North America, demonstrating (i) significantly higher standing genetic diversity and (ii) phylogenetic trees with a weaker signature of immune escape in AIVs than in human viruses. To explain these differences, we performed statistical analyses to quantify the relative contribution of several potential explanations. We found that HA genetic diversity in avian viruses is determined by a combination of factors, predominantly subtype-specific differences in host immune selective pressure and the ecology of transmission (in particular, the durability of subtypes in aquatic environments). Extending this analysis using a computational model demonstrated that virus durability may lead to long-term, indirect chains of transmission that, when coupled with a short host lifespan, can generate and maintain the observed high levels of genetic diversity. Further evidence in support of this novel finding was found by demonstrating an association between subtype-specific environmental durability and predicted phylogenetic signatures: genetic diversity, variation in phylogenetic tree branch lengths, and tree height. The conclusion that environmental transmission plays an important role in the evolutionary biology of avian influenza viruses-a manifestation of the "storage effect"-highlights the potentially unpredictable impact of wildlife reservoirs for future human pandemics and the need for improved understanding of the natural ecology of these viruses.
禽流感病毒(AIVs)对于人类大流行毒株的起源至关重要。然而,尽管它们具有科学和公共卫生意义,但在野生鸟类中,禽流感病毒的生态学和进化仍有许多有待了解之处,野生鸟类是主要的遗传多样性库形成和维持的地方。在这里,我们展示了对北美人类和禽流感病毒的比较系统发育动力学分析,结果表明:(i)禽流感病毒的现有遗传多样性显著更高;(ii)与人类病毒相比,禽流感病毒系统发育树中免疫逃逸的特征较弱。为了解释这些差异,我们进行了统计分析,以量化几种潜在解释的相对贡献。我们发现,禽流感病毒的血凝素(HA)基因多样性是由多种因素共同决定的,主要是宿主免疫选择压力的亚型特异性差异以及传播生态学(特别是亚型在水生环境中的持久性)。使用计算模型扩展此分析表明,病毒持久性可能导致长期的间接传播链,当与宿主较短的寿命相结合时,可以产生并维持观察到的高水平遗传多样性。通过证明亚型特异性环境持久性与预测的系统发育特征之间的关联,进一步找到了支持这一新发现的证据:遗传多样性、系统发育树分支长度的变化以及树高。环境传播在禽流感病毒进化生物学中起重要作用这一结论——即“储存效应”的一种表现——凸显了野生动物宿主对未来人类大流行可能产生的不可预测影响,以及更好地了解这些病毒自然生态学的必要性。