Klimas Aleksandra, Entcheva Emilia
Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794, United States.
Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794, United StatesbStony Brook University, Department of Physiology and Biophysics, Stony Brook, New York 11794, United StatescStony Brook University, Institute for Mole.
J Biomed Opt. 2014 Aug;19(8):080701. doi: 10.1117/1.JBO.19.8.080701.
The ability to perform precise, spatially localized actuation and measurements of electrical activity in the heart is crucial in understanding cardiac electrophysiology and devising new therapeutic solutions for control of cardiac arrhythmias. Current cardiac imaging techniques (i.e. optical mapping) employ voltage- or calcium-sensitive fluorescent dyes to visualize the electrical signal propagation through cardiac syncytium in vitro or in situ with very high-spatiotemporal resolution. The extension of optogenetics into the cardiac field, where cardiac tissue is genetically altered to express light-sensitive ion channels allowing electrical activity to be elicited or suppressed in a precise cell-specific way, has opened the possibility for all-optical interrogation of cardiac electrophysiology. In vivo application of cardiac optogenetics faces multiple challenges and necessitates suitable optical systems employing fiber optics to actuate and sense electrical signals. In this technical perspective, we present a compendium of clinically relevant access routes to different parts of the cardiac electrical conduction system based on currently employed catheter imaging systems and determine the quantitative size constraints for endoscopic cardiac optogenetics. We discuss the relevant technical advancements in microendoscopy, cardiac imaging, and optogenetics and outline the strategies for combining them to create a portable, miniaturized fiber-based system for all-optical interrogation of cardiac electrophysiology in vivo.
能够在心脏中进行精确的、空间定位的电活动驱动和测量对于理解心脏电生理学以及设计控制心律失常的新治疗方案至关重要。当前的心脏成像技术(即光学标测)使用电压或钙敏荧光染料,以非常高的时空分辨率在体外或原位可视化电信号通过心脏合胞体的传播。光遗传学扩展到心脏领域,即对心脏组织进行基因改造以表达光敏感离子通道,从而能够以精确的细胞特异性方式引发或抑制电活动,这为心脏电生理学的全光学研究开辟了可能性。心脏光遗传学的体内应用面临多重挑战,需要合适的采用光纤的光学系统来驱动和感测电信号。在本技术展望中,我们基于当前使用的导管成像系统,给出了通往心脏电传导系统不同部位的临床相关接入路径汇总,并确定了内镜心脏光遗传学的定量尺寸限制。我们讨论了微内窥镜检查、心脏成像和光遗传学方面的相关技术进展,并概述了将它们结合起来创建一个便携式、小型化的基于光纤的系统以在体内对心脏电生理学进行全光学研究的策略。