Suppr超能文献

迈向体内微内镜启发的心脏光遗传学:技术概述与展望

Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective.

作者信息

Klimas Aleksandra, Entcheva Emilia

机构信息

Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794, United States.

Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794, United StatesbStony Brook University, Department of Physiology and Biophysics, Stony Brook, New York 11794, United StatescStony Brook University, Institute for Mole.

出版信息

J Biomed Opt. 2014 Aug;19(8):080701. doi: 10.1117/1.JBO.19.8.080701.

Abstract

The ability to perform precise, spatially localized actuation and measurements of electrical activity in the heart is crucial in understanding cardiac electrophysiology and devising new therapeutic solutions for control of cardiac arrhythmias. Current cardiac imaging techniques (i.e. optical mapping) employ voltage- or calcium-sensitive fluorescent dyes to visualize the electrical signal propagation through cardiac syncytium in vitro or in situ with very high-spatiotemporal resolution. The extension of optogenetics into the cardiac field, where cardiac tissue is genetically altered to express light-sensitive ion channels allowing electrical activity to be elicited or suppressed in a precise cell-specific way, has opened the possibility for all-optical interrogation of cardiac electrophysiology. In vivo application of cardiac optogenetics faces multiple challenges and necessitates suitable optical systems employing fiber optics to actuate and sense electrical signals. In this technical perspective, we present a compendium of clinically relevant access routes to different parts of the cardiac electrical conduction system based on currently employed catheter imaging systems and determine the quantitative size constraints for endoscopic cardiac optogenetics. We discuss the relevant technical advancements in microendoscopy, cardiac imaging, and optogenetics and outline the strategies for combining them to create a portable, miniaturized fiber-based system for all-optical interrogation of cardiac electrophysiology in vivo.

摘要

能够在心脏中进行精确的、空间定位的电活动驱动和测量对于理解心脏电生理学以及设计控制心律失常的新治疗方案至关重要。当前的心脏成像技术(即光学标测)使用电压或钙敏荧光染料,以非常高的时空分辨率在体外或原位可视化电信号通过心脏合胞体的传播。光遗传学扩展到心脏领域,即对心脏组织进行基因改造以表达光敏感离子通道,从而能够以精确的细胞特异性方式引发或抑制电活动,这为心脏电生理学的全光学研究开辟了可能性。心脏光遗传学的体内应用面临多重挑战,需要合适的采用光纤的光学系统来驱动和感测电信号。在本技术展望中,我们基于当前使用的导管成像系统,给出了通往心脏电传导系统不同部位的临床相关接入路径汇总,并确定了内镜心脏光遗传学的定量尺寸限制。我们讨论了微内窥镜检查、心脏成像和光遗传学方面的相关技术进展,并概述了将它们结合起来创建一个便携式、小型化的基于光纤的系统以在体内对心脏电生理学进行全光学研究的策略。

相似文献

1
Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective.
J Biomed Opt. 2014 Aug;19(8):080701. doi: 10.1117/1.JBO.19.8.080701.
3
Cardiac applications of optogenetics.
Prog Biophys Mol Biol. 2014 Aug;115(2-3):294-304. doi: 10.1016/j.pbiomolbio.2014.07.001. Epub 2014 Jul 15.
4
Macroscopic optical mapping of excitation in cardiac cell networks with ultra-high spatiotemporal resolution.
Prog Biophys Mol Biol. 2006 Oct;92(2):232-57. doi: 10.1016/j.pbiomolbio.2005.10.003. Epub 2005 Nov 21.
5
Cardiac Optogenetics and Optical Mapping - Overcoming Spectral Congestion in All-Optical Cardiac Electrophysiology.
Front Physiol. 2019 Mar 7;10:182. doi: 10.3389/fphys.2019.00182. eCollection 2019.
6
Cardiac optogenetics: a decade of enlightenment.
Nat Rev Cardiol. 2021 May;18(5):349-367. doi: 10.1038/s41569-020-00478-0. Epub 2020 Dec 18.
7
Will cardiac optogenetics find the way through the obscure angles of heart physiology?
Biochem Biophys Res Commun. 2017 Jan 22;482(4):515-523. doi: 10.1016/j.bbrc.2016.11.104. Epub 2016 Nov 18.
8
Ultrasonically actuated silicon microprobes for cardiac signal recording.
IEEE Trans Biomed Eng. 2006 Aug;53(8):1665-71. doi: 10.1109/TBME.2006.877808.
9
Cardiac optogenetics.
Am J Physiol Heart Circ Physiol. 2013 May;304(9):H1179-91. doi: 10.1152/ajpheart.00432.2012. Epub 2013 Mar 1.
10
Optogenetic sensors in the zebrafish heart: a novel in vivo electrophysiological tool to study cardiac arrhythmogenesis.
Theranostics. 2018 Sep 9;8(17):4750-4764. doi: 10.7150/thno.26108. eCollection 2018.

引用本文的文献

1
Emerging trends in the development of flexible optrode arrays for electrophysiology.
APL Bioeng. 2023 Sep 7;7(3):031503. doi: 10.1063/5.0153753. eCollection 2023 Sep.
2
Optogenetically mediated large volume suppression and synchronized excitation of human ventricular cardiomyocytes.
Pflugers Arch. 2023 Dec;475(12):1479-1503. doi: 10.1007/s00424-023-02831-x. Epub 2023 Jul 7.
3
Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals.
Am J Physiol Heart Circ Physiol. 2022 Dec 1;323(6):H1137-H1166. doi: 10.1152/ajpheart.00439.2022. Epub 2022 Oct 21.
5
Cardiac optogenetics: a decade of enlightenment.
Nat Rev Cardiol. 2021 May;18(5):349-367. doi: 10.1038/s41569-020-00478-0. Epub 2020 Dec 18.
6
Optogenetic Termination of Cardiac Arrhythmia: Mechanistic Enlightenment and Therapeutic Application?
Front Physiol. 2019 Jun 6;10:675. doi: 10.3389/fphys.2019.00675. eCollection 2019.
7
Miniaturized omnidirectional flexible side-view endoscope for rapid monitoring of thin tubular biostructures.
Biomed Opt Express. 2019 Apr 4;10(5):2264-2274. doi: 10.1364/BOE.10.002264. eCollection 2019 May 1.
8
Cardiac Optogenetics and Optical Mapping - Overcoming Spectral Congestion in All-Optical Cardiac Electrophysiology.
Front Physiol. 2019 Mar 7;10:182. doi: 10.3389/fphys.2019.00182. eCollection 2019.
9
Adeno-Associated Virus Mediated Gene Delivery: Implications for Scalable and Cardiac Optogenetic Models.
Front Physiol. 2019 Mar 5;10:168. doi: 10.3389/fphys.2019.00168. eCollection 2019.
10
Modulation of cardiomyocyte activity using pulsed laser irradiated gold nanoparticles.
Biomed Opt Express. 2016 Dec 8;8(1):177-192. doi: 10.1364/BOE.8.000177. eCollection 2017 Jan 1.

本文引用的文献

1
Optogenetic control of cardiomyocytes via viral delivery.
Methods Mol Biol. 2014;1181:215-28. doi: 10.1007/978-1-4939-1047-2_19.
2
Cardiac applications of optogenetics.
Prog Biophys Mol Biol. 2014 Aug;115(2-3):294-304. doi: 10.1016/j.pbiomolbio.2014.07.001. Epub 2014 Jul 15.
3
Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts.
Nature. 2014 Jun 12;510(7504):273-7. doi: 10.1038/nature13233. Epub 2014 Apr 30.
4
Gene therapies for arrhythmias in heart failure.
Pflugers Arch. 2014 Jun;466(6):1211-7. doi: 10.1007/s00424-014-1485-3. Epub 2014 Feb 26.
5
Independent optical excitation of distinct neural populations.
Nat Methods. 2014 Mar;11(3):338-46. doi: 10.1038/nmeth.2836. Epub 2014 Feb 9.
6
Temporal dynamics of microbial rhodopsin fluorescence reports absolute membrane voltage.
Biophys J. 2014 Feb 4;106(3):639-48. doi: 10.1016/j.bpj.2013.11.4493.
7
Experimental and analytical comparative study of optical coefficient of fresh and frozen rat tissues.
J Biomed Opt. 2013 Nov;18(11):117010. doi: 10.1117/1.JBO.18.11.117010.
9
Optogenetic LED array for perturbing cardiac electrophysiology.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1619-22. doi: 10.1109/EMBC.2013.6609826.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验