Department of Chemistry and Catalysis Research Center, Technische Universität München , Lichtenbergstraße 4, 85747 Garching, Germany.
J Am Chem Soc. 2014 Sep 10;136(36):12691-701. doi: 10.1021/ja505411s. Epub 2014 Aug 28.
Ethane is oxidatively dehydrogenated with a selectivity up to 95% on catalysts comprising a mixed molten alkali chloride supported on a mildly redox-active Dy2O3-doped MgO. The reactive oxyanionic OCl(-) species acting as active sites are catalytically formed by oxidation of Cl(-) at the MgO surface. Under reaction conditions this site is regenerated by O2, dissolving first in the alkali chloride melt, and in the second step dissociating and replenishing the oxygen vacancies on MgO. The oxyanion reactively dehydrogenates ethane at the melt-gas phase interface with nearly ideal selectivity. Thus, the reaction is concluded to proceed via two coupled steps following a Mars-van-Krevelen-mechanism at the solid-liquid and gas-liquid interface. The dissociation of O2 and/or the oxidation of Cl(-) at the melt-solid interface is concluded to have the lowest forward rate constants. The compositions of the oxide core and the molten chloride shell control the catalytic activity via the redox potential of the metal oxide and of the OCl(-). Traces of water may be present in the molten chloride under reaction conditions, but the specific impact of this water is not obvious at present. The spatial separation of oxygen and ethane activation sites and the dynamic rearrangement of the surface anions and cations, preventing the exposure of coordinatively unsaturated cations, are concluded to be the origin of the surprisingly high olefin selectivity.
乙烷在包含混合熔融碱金属氯化物负载在轻度氧化还原活性 Dy2O3 掺杂的 MgO 上的催化剂上进行氧化脱氢,选择性高达 95%。作为活性位的反应性阴离子 OCl(-)物种通过 MgO 表面上的 Cl(-)氧化催化形成。在反应条件下,该位通过 O2 再生,首先溶解在碱金属氯化物熔体中,然后在第二步中解离并补充 MgO 上的氧空位。阴离子在熔体-气相界面处近乎理想的选择性地反应性脱氢乙烷。因此,反应被认为通过在固-液和气-液界面处遵循 Mars-van-Krevelen 机理的两个耦合步骤进行。O2 的解离和/或熔体-固界面处的 Cl(-)氧化被认为具有最低的前向速率常数。氧化物核和熔融氯化物壳的组成通过金属氧化物和 OCl(-)的氧化还原电势控制催化活性。在反应条件下,熔融氯化物中可能存在痕量的水,但目前这种水的具体影响尚不明显。氧和乙烷活化位的空间分离以及表面阴离子和阳离子的动态重排,防止配位不饱和阳离子的暴露,被认为是令人惊讶的高烯烃选择性的原因。