Büchner Tina, Drescher Daniela, Traub Heike, Schrade Petra, Bachmann Sebastian, Jakubowski Norbert, Kneipp Janina
Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
Anal Bioanal Chem. 2014 Nov;406(27):7003-14. doi: 10.1007/s00216-014-8069-0. Epub 2014 Aug 14.
The cellular response to nanoparticle exposure is essential in various contexts, especially in nanotoxicity and nanomedicine. Here, 14-nm gold nanoparticles in 3T3 fibroblast cells are investigated in a series of pulse-chase experiments with a 30-min incubation pulse and chase times ranging from 15 min to 48 h. The gold nanoparticles and their aggregates are quantified inside the cellular ultrastructure by laser ablation inductively coupled plasma mass spectrometry micromapping and evaluated regarding the surface-enhanced Raman scattering (SERS) signals. In this way, both information about their localization at the micrometre scale and their molecular nanoenvironment, respectively, is obtained and can be related. Thus, the nanoparticle pathway from endocytotic uptake, intracellular processing, to cell division can be followed. It is shown that the ability of the intracellular nanoparticles and their accumulations and aggregates to support high SERS signals is neither directly related to nanoparticle amount nor to high local nanoparticle densities. The SERS data indicate that aggregate geometry and interparticle distances in the cell must change in the course of endosomal maturation and play a critical role for a specific gold nanoparticle type in order to act as efficient SERS nanoprobe. This finding is supported by TEM images, showing only a minor portion of aggregates that present small interparticle spacing. The SERS spectra obtained after different chase times show a changing composition and/or structure of the biomolecule corona of the gold nanoparticles as a consequence of endosomal processing.
细胞对纳米颗粒暴露的反应在各种情况下都至关重要,尤其是在纳米毒性和纳米医学方面。在此,通过一系列脉冲追踪实验,对3T3成纤维细胞中的14纳米金纳米颗粒进行了研究,孵育脉冲时间为30分钟,追踪时间从15分钟到48小时不等。通过激光烧蚀电感耦合等离子体质谱微区分析对细胞超微结构内的金纳米颗粒及其聚集体进行定量,并根据表面增强拉曼散射(SERS)信号进行评估。通过这种方式,分别获得了有关它们在微米尺度上的定位及其分子纳米环境的信息,并且可以将两者关联起来。因此,可以追踪纳米颗粒从内吞摄取、细胞内加工到细胞分裂的途径。结果表明,细胞内纳米颗粒及其聚积物和聚集体支持高SERS信号的能力既不直接与纳米颗粒数量相关,也不与高局部纳米颗粒密度相关。SERS数据表明,在内涵体成熟过程中,细胞内聚集体的几何形状和颗粒间距离必须发生变化,并且对于特定类型的金纳米颗粒发挥高效SERS纳米探针的作用起着关键作用。这一发现得到了透射电子显微镜图像的支持,该图像仅显示了一小部分颗粒间间距较小的聚集体。在不同追踪时间后获得的SERS光谱显示,由于内涵体加工,金纳米颗粒生物分子冠的组成和/或结构发生了变化。