Suppr超能文献

样本量对工具变量法的有用性有重要影响,这取决于工具的强度和混杂程度。

Sample size importantly limits the usefulness of instrumental variable methods, depending on instrument strength and level of confounding.

机构信息

Department of Clinical Epidemiology, C7-P, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands.

Department of Clinical Epidemiology, C7-P, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands; Department of Endocrinology and Metabolic Diseases, Leiden University Medical Centre, Leiden, The Netherlands.

出版信息

J Clin Epidemiol. 2014 Nov;67(11):1258-64. doi: 10.1016/j.jclinepi.2014.05.019. Epub 2014 Aug 12.

Abstract

OBJECTIVES

Instrumental variable (IV) analysis is promising for estimation of therapeutic effects from observational data as it can circumvent unmeasured confounding. However, even if IV assumptions hold, IV analyses will not necessarily provide an estimate closer to the true effect than conventional analyses as this depends on the estimates' bias and variance. We investigated how estimates from standard regression (ordinary least squares [OLS]) and IV (two-stage least squares) regression compare on mean squared error (MSE).

STUDY DESIGN

We derived an equation for approximation of the threshold sample size, above which IV estimates have a smaller MSE than OLS estimates. Next, we performed simulations, varying sample size, instrument strength, and level of unmeasured confounding. IV assumptions were fulfilled by design.

RESULTS

Although biased, OLS estimates were closer on average to the true effect than IV estimates at small sample sizes because of their smaller variance. The threshold sample size above which IV analysis outperforms OLS regression depends on instrument strength and strength of unmeasured confounding but will usually be large given the typical moderate instrument strength in medical research.

CONCLUSION

IV methods are of most value in large studies if considerable unmeasured confounding is likely and a strong and plausible instrument is available.

摘要

目的

工具变量(IV)分析有望从观察性数据中估计治疗效果,因为它可以避免未测量的混杂。然而,即使 IV 假设成立,IV 分析也不一定能比传统分析提供更接近真实效果的估计,因为这取决于估计的偏差和方差。我们研究了标准回归(普通最小二乘法[OLS])和 IV(两阶段最小二乘法)回归的估计值在均方误差(MSE)上的差异。

研究设计

我们推导出了一个近似阈值样本量的方程,在此样本量之上,IV 估计的 MSE 小于 OLS 估计的 MSE。然后,我们进行了模拟,改变了样本量、工具强度和未测量混杂的程度。通过设计满足 IV 假设。

结果

尽管存在偏差,但由于 OLS 估计的方差较小,在小样本量下,OLS 估计值平均更接近真实效果。IV 分析优于 OLS 回归的阈值样本量取决于工具强度和未测量混杂的强度,但鉴于医学研究中通常中等强度的工具,该阈值通常会很大。

结论

如果存在大量未测量的混杂,并且有一个强有力且合理的工具,那么 IV 方法在大型研究中最有价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验