Ollis Anne A, Zhang Sheng, Fisher Adam C, DeLisa Matthew P
School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA.
Proteomics and Mass Spectrometry Core Facility, Cornell University, Ithaca, New York, USA.
Nat Chem Biol. 2014 Oct;10(10):816-22. doi: 10.1038/nchembio.1609. Epub 2014 Aug 17.
The Campylobacter jejuni protein glycosylation locus (pgl) encodes machinery for asparagine-linked (N-linked) glycosylation and serves as the archetype for bacterial N-linked glycosylation. This machinery has been functionally transferred into Escherichia coli, enabling convenient mechanistic dissection of the N-linked glycosylation process in this genetically tractable host. Here we sought to identify sequence determinants in the oligosaccharyltransferase PglB that restrict its specificity to only those glycan acceptor sites containing a negatively charged residue at the -2 position relative to asparagine. This involved creation of a genetic assay, glycosylation of secreted N-linked acceptor proteins (glycoSNAP), that facilitates high-throughput screening of glycophenotypes in E. coli. Using this assay, we isolated several C. jejuni PglB variants that could glycosylate an array of noncanonical acceptor sequences, including one in a eukaryotic N-glycoprotein. These results underscore the utility of glycoSNAP for shedding light on poorly understood aspects of N-linked glycosylation and for engineering designer N-linked glycosylation biocatalysts.
空肠弯曲菌蛋白糖基化位点(pgl)编码用于天冬酰胺连接(N 连接)糖基化的机制,并作为细菌 N 连接糖基化的原型。该机制已在功能上转移到大肠杆菌中,使得在这个遗传上易于操作的宿主中对 N 连接糖基化过程进行方便的机制剖析成为可能。在这里,我们试图确定寡糖基转移酶 PglB 中的序列决定因素,这些因素将其特异性限制在相对于天冬酰胺的 -2 位置含有带负电荷残基的那些聚糖受体位点上。这涉及创建一种遗传检测方法,即分泌型 N 连接受体蛋白(glycoSNAP)的糖基化,该方法有助于在大肠杆菌中对糖表型进行高通量筛选。使用该检测方法,我们分离出了几种空肠弯曲菌 PglB 变体,它们可以对一系列非典型受体序列进行糖基化,包括一种真核 N 糖蛋白中的序列。这些结果强调了 glycoSNAP 在阐明 N 连接糖基化中了解不足的方面以及工程设计 N 连接糖基化生物催化剂方面的实用性。