Ihssen Julian, Haas Jürgen, Kowarik Michael, Wiesli Luzia, Wacker Michael, Schwede Torsten, Thöny-Meyer Linda
Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St Gallen 9014, Switzerland
Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel 4056, Switzerland SIB Swiss Institute of Bioinformatics, Klingelbergstrasse 50/70, Basel 4056, Switzerland.
Open Biol. 2015 Apr;5(4):140227. doi: 10.1098/rsob.140227.
Conjugate vaccines belong to the most efficient preventive measures against life-threatening bacterial infections. Functional expression of N-oligosaccharyltransferase (N-OST) PglB of Campylobacter jejuni in Escherichia coli enables a simplified production of glycoconjugate vaccines in prokaryotic cells. Polysaccharide antigens of pathogenic bacteria can be covalently coupled to immunogenic acceptor proteins bearing engineered glycosylation sites. Transfer efficiency of PglBCj is low for certain heterologous polysaccharide substrates. In this study, we increased glycosylation rates for Salmonella enterica sv. Typhimurium LT2 O antigen (which lacks N-acetyl sugars) and Staphylococcus aureus CP5 polysaccharides by structure-guided engineering of PglB. A three-dimensional homology model of membrane-associated PglBCj, docked to the natural C. jejuni N-glycan attached to the acceptor peptide, was used to identify potential sugar-interacting residues as targets for mutagenesis. Saturation mutagenesis of an active site residue yielded the enhancing mutation N311V, which facilitated fivefold to 11-fold increased in vivo glycosylation rates as determined by glycoprotein-specific ELISA. Further rounds of in vitro evolution led to a triple mutant S80R-Q287P-N311V enabling a yield improvement of S. enterica LT2 glycoconjugates by a factor of 16. Our results demonstrate that bacterial N-OST can be tailored to specific polysaccharide substrates by structure-guided protein engineering.
结合疫苗是预防危及生命的细菌感染最有效的措施之一。空肠弯曲菌的N-寡糖基转移酶(N-OST)PglB在大肠杆菌中的功能性表达使得在原核细胞中能够简化糖结合疫苗的生产。病原菌的多糖抗原可以共价偶联到带有工程化糖基化位点的免疫原性受体蛋白上。对于某些异源多糖底物,PglBCj的转移效率较低。在本研究中,我们通过对PglB进行结构导向工程,提高了鼠伤寒沙门氏菌LT2 O抗原(缺乏N-乙酰糖)和金黄色葡萄球菌CP5多糖的糖基化率。将与膜相关的PglBCj的三维同源模型对接至与受体肽相连的天然空肠弯曲菌N-聚糖上,用于鉴定潜在的糖相互作用残基作为诱变靶点。对一个活性位点残基进行饱和诱变产生了增强突变N311V,通过糖蛋白特异性ELISA测定,该突变使体内糖基化率提高了5倍至11倍。进一步的体外进化轮次产生了三突变体S80R-Q287P-N311V,使鼠伤寒沙门氏菌LT2糖结合物的产量提高了16倍。我们的结果表明,细菌N-OST可以通过结构导向的蛋白质工程针对特定的多糖底物进行优化。