Bowyer Susan M
Henry Ford Hospital, Detroit, USA,
Curr Top Behav Neurosci. 2014;21:315-30. doi: 10.1007/7854_2014_348.
Communication across the brain networks is dependent on neuronal oscillations. Detection of the synchronous activation of neurons can be used to determine the well-being of the connectivity in the human brain networks. Well-connected highly synchronous activity can be measured by MEG, EEG, fMRI, and PET and then analyzed with several types of mathematical algorithms. Coherence is one mathematical method that can detect how well 2 or more sensors or brain regions have similar oscillatory activity with each other. Phase synchrony can be used to determine if these oscillatory activities are in sync or out of sync with each other. Correlation is used to determine the strength of interaction between two locations or signals. Granger causality can be used to determine the direction of the information flow in the neuronal brain networks. Statistical analysis can be performed on the connectivity results to verify evidence of normal or abnormal network activity in a patient.
大脑网络间的通信依赖于神经元振荡。检测神经元的同步激活可用于确定人类大脑网络中连接性的健康状况。连接良好的高度同步活动可通过脑磁图(MEG)、脑电图(EEG)、功能磁共振成像(fMRI)和正电子发射断层扫描(PET)进行测量,然后用几种类型的数学算法进行分析。相干性是一种数学方法,可检测两个或更多传感器或脑区彼此之间振荡活动的相似程度。相位同步可用于确定这些振荡活动彼此是同步还是不同步。相关性用于确定两个位置或信号之间相互作用的强度。格兰杰因果关系可用于确定神经元大脑网络中信息流的方向。可对连接性结果进行统计分析,以验证患者正常或异常网络活动的证据。