Suppr超能文献

控制速率冷冻以调节工程皮肤替代物中胶原-糖胺聚糖支架的结构。

Controlled-rate freezing to regulate the structure of collagen-glycosaminoglycan scaffolds in engineered skin substitutes.

作者信息

Lloyd Christopher, Besse John, Boyce Steven

机构信息

University of Cincinnati, Surgery; Shriners Hospitals for Children, Research.

出版信息

J Biomed Mater Res B Appl Biomater. 2015 May;103(4):832-40. doi: 10.1002/jbm.b.33253. Epub 2014 Aug 18.

Abstract

Controlled-rate freezing (CRF) of biopolymer scaffolds may increase reproducibility of microstructure compared with analog processes. Freezing of collagen-glycosaminoglycan (CG) scaffolds by CRF with liquid nitrogen at chamber cooling rates of -80, -40, -20, or -10°C/min, was compared with submersion in 95% ethanol at -55°C. Cooling rates of -80 or -40°C/min generated scaffolds with pore areas and pore fractions that were comparable to scaffolds frozen in ethanol. Test and control scaffolds were populated with human dermal fibroblasts and epidermal keratinocytes to generate engineered skin substitutes (ESS) and evaluated for surface hydration and mitochondrial metabolism. ESS with scaffolds frozen by CRF at -80 or -40°C/min were comparable with, or better than, ESS with control scaffolds (p < 0.05). These results demonstrate that fabrication of CG scaffolds by CRF offers advantages of digital programming, as well as greater reproducibility, safety, and simplicity than submersion in chilled ethanol without compromise of biological properties required for biomedical applications.

摘要

与类似工艺相比,生物聚合物支架的控速冷冻(CRF)可能会提高微观结构的再现性。将胶原蛋白-糖胺聚糖(CG)支架在液氮中以-80、-40、-20或-10°C/分钟的腔室冷却速率进行控速冷冻,并与在-55°C下浸入95%乙醇中进行比较。-80或-40°C/分钟的冷却速率产生的支架的孔隙面积和孔隙率与在乙醇中冷冻的支架相当。将测试支架和对照支架接种人真皮成纤维细胞和表皮角质形成细胞,以生成工程皮肤替代物(ESS),并评估其表面水合作用和线粒体代谢。通过CRF在-80或-40°C/分钟下冷冻的支架所生成的ESS与对照支架所生成的ESS相当,或优于对照支架(p < 0.05)。这些结果表明,通过CRF制造CG支架具有数字编程的优势,并且比浸入冷冻乙醇具有更高的再现性、安全性和简便性,同时不会损害生物医学应用所需的生物学特性。

相似文献

1
Controlled-rate freezing to regulate the structure of collagen-glycosaminoglycan scaffolds in engineered skin substitutes.
J Biomed Mater Res B Appl Biomater. 2015 May;103(4):832-40. doi: 10.1002/jbm.b.33253. Epub 2014 Aug 18.
2
A novel hydrogel-collagen composite improves functionality of an injectable extracellular matrix.
Acta Biomater. 2011 Aug;7(8):3060-9. doi: 10.1016/j.actbio.2011.04.024. Epub 2011 May 3.
3
4
A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting.
Biomaterials. 2011 Jul;32(21):4782-92. doi: 10.1016/j.biomaterials.2011.03.023. Epub 2011 Apr 8.
5
Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process.
Bioprocess Biosyst Eng. 2011 Sep;34(7):903-11. doi: 10.1007/s00449-011-0541-z. Epub 2011 Apr 7.

引用本文的文献

2
Advances in Skin Tissue Bioengineering and the Challenges of Clinical Translation.
Front Surg. 2021 Aug 24;8:640879. doi: 10.3389/fsurg.2021.640879. eCollection 2021.
3
Bioengineered Self-assembled Skin as an Alternative to Skin Grafts.
Plast Reconstr Surg Glob Open. 2016 Jun 10;4(6):e731. doi: 10.1097/GOX.0000000000000723. eCollection 2016 Jun.

本文引用的文献

1
Plant-derived human collagen scaffolds for skin tissue engineering.
Tissue Eng Part A. 2013 Jul;19(13-14):1507-18. doi: 10.1089/ten.TEA.2012.0338. Epub 2013 Feb 19.
2
Collagen--emerging collagen based therapies hit the patient.
Adv Drug Deliv Rev. 2013 Apr;65(4):429-56. doi: 10.1016/j.addr.2012.08.010. Epub 2012 Sep 6.
3
Collagen for bone tissue regeneration.
Acta Biomater. 2012 Sep;8(9):3191-200. doi: 10.1016/j.actbio.2012.06.014. Epub 2012 Jun 15.
4
Assessment of replication rates of human keratinocytes in engineered skin substitutes grafted to athymic mice.
Wound Repair Regen. 2012 Jul-Aug;20(4):544-51. doi: 10.1111/j.1524-475X.2012.00807.x. Epub 2012 Jun 7.
5
Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis.
Acta Biomater. 2011 Oct;7(10):3757-65. doi: 10.1016/j.actbio.2011.06.020. Epub 2011 Jun 17.
6
Scaffolds for dental pulp tissue engineering.
Adv Dent Res. 2011 Jul;23(3):333-9. doi: 10.1177/0022034511405326.
8
Biologically active collagen-based scaffolds: advances in processing and characterization.
Philos Trans A Math Phys Eng Sci. 2010 Apr 28;368(1917):2123-39. doi: 10.1098/rsta.2010.0015.
9
Nanostructured polymer scaffolds for tissue engineering and regenerative medicine.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Mar-Apr;1(2):226-36. doi: 10.1002/wnan.26.
10
Review of vitreous islet cryopreservation: Some practical issues and their resolution.
Organogenesis. 2009 Jul;5(3):155-66. doi: 10.4161/org.5.3.9812.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验