Suppr超能文献

各向异性冷冻铸造胶原支架用于组织再生:处理条件如何影响干燥和完全水合状态下的结构和性能。

Anisotropic freeze-cast collagen scaffolds for tissue regeneration: How processing conditions affect structure and properties in the dry and fully hydrated states.

机构信息

Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA.

Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA.

出版信息

J Mech Behav Biomed Mater. 2019 Feb;90:350-364. doi: 10.1016/j.jmbbm.2018.09.012. Epub 2018 Sep 25.

Abstract

Few systematic structure-property-processing correlations for directionally freeze-cast biopolymer scaffolds are reported. Such correlations are critical to enable scaffold design with attractive structural and mechanical cues in vivo. This study focuses on freeze-cast collagen scaffolds with three different applied cooling rates (10, 1, and 0.1 °C/min) and two freezing directions (longitudinal and radial). A semi-automated approach for the structural characterization of fully hydrated scaffolds by confocal microscopy is developed to facilitate an objective quantification and comparison of structural features. Additionally, scanning electron microscopy and compression testing are performed longitudinally and transversely. Structural and mechanical properties are determined on dry and fully hydrated scaffolds. Longitudinally frozen scaffolds have aligned and regular pores while those in radially frozen ones exhibit greater variations in pore geometry and alignment. Lamellar spacing, pore area, and cell wall thickness increase with decreasing cooling rate: in longitudinally frozen scaffolds from 25 µm to 83.5 µm, from 814 µm to 8452 µm, and from 4.21 µm to 10.4 µm, and in radially frozen ones, from 69 µm to 116 µm, from 7679 µm to 25,670 µm, and from 6.18 µm to 13.6 µm, respectively. Both longitudinally and radially frozen scaffolds possess higher mechanical property values, when loaded parallel rather than perpendicular to the ice-crystal growth direction. Modulus and yield strength range from 779 kPa to 4700 kPa and from 38 kPa to 137 kPa, respectively, as a function of cooling rate and freezing direction. Collated, the correlations obtained in this study enable the custom-design of freeze-cast collagen scaffolds, which are ideally suited for a large variety of tissue regeneration applications.

摘要

鲜有针对各向异性冷冻成型生物聚合物支架的系统结构-性能-加工相关性的报道。这些相关性对于实现具有体内有吸引力的结构和机械线索的支架设计至关重要。本研究聚焦于具有三种不同应用冷却速率(10、1 和 0.1°C/min)和两种冷冻方向(纵向和径向)的冷冻成型胶原支架。开发了一种用于通过共聚焦显微镜对完全水合支架进行结构特征分析的半自动方法,以促进结构特征的客观量化和比较。此外,还进行了纵向和横向的扫描电子显微镜和压缩测试。对干燥和完全水合支架进行了结构和机械性能测试。纵向冷冻支架具有对齐且规则的孔,而径向冷冻支架的孔几何形状和对齐方式变化较大。层间距、孔面积和细胞壁厚度随冷却速率的降低而增加:在纵向冷冻支架中,从 25 µm 增加到 83.5 µm,从 814 µm 增加到 8452 µm,从 4.21 µm 增加到 10.4 µm;在径向冷冻支架中,从 69 µm 增加到 116 µm,从 7679 µm 增加到 25670 µm,从 6.18 µm 增加到 13.6 µm。无论是纵向还是径向冷冻的支架,当平行于而非垂直于冰晶生长方向加载时,其机械性能值都更高。模量和屈服强度分别在 779 kPa 至 4700 kPa 和 38 kPa 至 137 kPa 的范围内变化,这取决于冷却速率和冷冻方向。综上所述,本研究中获得的相关性使定制各向异性冷冻成型胶原支架成为可能,这非常适合各种组织再生应用。

相似文献

2
3
Structure-property-processing correlations of longitudinal freeze-cast chitosan scaffolds for biomedical applications.
J Mech Behav Biomed Mater. 2021 Sep;121:104589. doi: 10.1016/j.jmbbm.2021.104589. Epub 2021 May 19.
4
Plant-Derived Nanocellulose as Structural and Mechanical Reinforcement of Freeze-Cast Chitosan Scaffolds for Biomedical Applications.
Biomacromolecules. 2019 Oct 14;20(10):3733-3745. doi: 10.1021/acs.biomac.9b00784. Epub 2019 Sep 26.
5
Values and property charts for anisotropic freeze-cast collagen scaffolds for tissue regeneration.
Data Brief. 2018 Nov 3;22:502-507. doi: 10.1016/j.dib.2018.10.171. eCollection 2019 Feb.
6
7
Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states.
Acta Biomater. 2016 Mar;33:166-175. doi: 10.1016/j.actbio.2016.01.041. Epub 2016 Jan 28.
8
Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design.
J Mech Behav Biomed Mater. 2015 Nov;51:169-83. doi: 10.1016/j.jmbbm.2015.06.033. Epub 2015 Jul 16.
9
Understanding anisotropy and architecture in ice-templated biopolymer scaffolds.
Mater Sci Eng C Mater Biol Appl. 2014 Apr 1;37:141-7. doi: 10.1016/j.msec.2014.01.009. Epub 2014 Jan 9.
10

引用本文的文献

4
5
Nature-Inspired Heat and Moisture Exchanger Filters Composed of Gelatin and Chitosan for the Design of Eco-Sustainable "Artificial Noses".
ACS Appl Polym Mater. 2023 Apr 12;5(5):3468-3479. doi: 10.1021/acsapm.3c00140. eCollection 2023 May 12.
7
Controlling scaffold conductivity and pore size to direct myogenic cell alignment and differentiation.
J Biomed Mater Res A. 2022 Oct;110(10):1681-1694. doi: 10.1002/jbm.a.37418. Epub 2022 Jun 28.
8
Anisotropic scaffolds for peripheral nerve and spinal cord regeneration.
Bioact Mater. 2021 Apr 23;6(11):4141-4160. doi: 10.1016/j.bioactmat.2021.04.019. eCollection 2021 Nov.
9
Plant-Derived Nanocellulose as Structural and Mechanical Reinforcement of Freeze-Cast Chitosan Scaffolds for Biomedical Applications.
Biomacromolecules. 2019 Oct 14;20(10):3733-3745. doi: 10.1021/acs.biomac.9b00784. Epub 2019 Sep 26.
10
Quantitative evaluation of the in vivo biocompatibility and performance of freeze-cast tissue scaffolds.
Biomed Mater. 2020 Jul 23;15(5):055003. doi: 10.1088/1748-605X/ab316a.

本文引用的文献

1
Preliminary Assessment of a Hysteroscopic Fallopian Tube Heat and Biomaterial Technology for Permanent Female Sterilization.
Proc SPIE Int Soc Opt Eng. 2017 Jan-Feb;10066. doi: 10.1117/12.2255843. Epub 2017 Feb 22.
2
Design, Manufacture, and Testing of a Tissue Scaffold for Permanent Female Sterilization by Tubal Occlusion.
MRS Adv. 2018;3(30):1685-1690. doi: 10.1557/adv.2018.57. Epub 2018 Jan 15.
3
Freeze-casting porous chitosan ureteral stents for improved drainage.
Acta Biomater. 2019 Jan 15;84:231-241. doi: 10.1016/j.actbio.2018.11.005. Epub 2018 Nov 7.
4
Fluorescent Reporter Mice for Nerve Guidance Conduit Assessment: A High-Throughput in vivo Model.
Laryngoscope. 2018 Nov;128(11):E386-E392. doi: 10.1002/lary.27439. Epub 2018 Aug 10.
5
Freeze-cast Porous Chitosan Conduit for Peripheral Nerve Repair.
MRS Adv. 2018;3(30):1677-1683. doi: 10.1557/adv.2018.194. Epub 2018 Feb 20.
6
3D polylactide-based scaffolds for studying human hepatocarcinoma processes .
Sci Technol Adv Mater. 2012 Jul 23;13(4):045003. doi: 10.1088/1468-6996/13/4/045003. eCollection 2012 Aug.
7
Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry.
J Mater Sci Mater Med. 2016 Oct;27(10):148. doi: 10.1007/s10856-016-5763-9. Epub 2016 Aug 31.
8
Investigation of structural collapse in unidirectionally freeze cast collagen scaffolds.
J Mater Sci Mater Med. 2016 Jan;27(1):15. doi: 10.1007/s10856-015-5632-y. Epub 2015 Dec 16.
9
A facile method to determine pore size distribution in porous scaffold by using image processing.
Micron. 2015 Sep;76:37-45. doi: 10.1016/j.micron.2015.05.001. Epub 2015 May 11.
10
Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect.
Acta Biomater. 2015 Jul;20:113-119. doi: 10.1016/j.actbio.2015.04.007. Epub 2015 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验