Dixit Purushottam D, Dill Ken A
Department of Systems Biology, Columbia University , New York, New York 10032, United States.
J Chem Theory Comput. 2014 Aug 12;10(8):3002-3005. doi: 10.1021/ct5001389. Epub 2014 Jun 2.
We present a principled approach for estimating the matrix of microscopic transition probabilities among states of a Markov process, given only its stationary state population distribution and a single average global kinetic observable. We adapt Maximum Caliber, a variational principle in which the path entropy is maximized over the distribution of all possible trajectories, subject to basic kinetic constraints and some average dynamical observables. We illustrate the method by computing the solvation dynamics of water molecules from molecular dynamics trajectories.
我们提出了一种有原则的方法,用于估计马尔可夫过程状态之间的微观转移概率矩阵,前提是仅已知其稳态总体分布和单个平均全局动力学可观测量。我们采用了最大口径方法,这是一种变分原理,即在所有可能轨迹的分布上使路径熵最大化,同时满足基本的动力学约束和一些平均动力学可观测量。我们通过从分子动力学轨迹计算水分子的溶剂化动力学来说明该方法。