Ghosh Kingshuk, Dill Ken A, Inamdar Mandar M, Seitaridou Effrosyni, Phillips Rob
Department of Biophysics, University of California, San Francisco, California 94143.
Am J Phys. 2006 Feb 1;74(2):123-133. doi: 10.1119/1.2142789.
We describe a simple framework for teaching the principles that underlie the dynamical laws of transport: Fick's law of diffusion, Fourier's law of heat flow, the Newtonian viscosity law, and the mass-action laws of chemical kinetics. In analogy with the way that the maximization of entropy over microstates leads to the Boltzmann distribution and predictions about equilibria, maximizing a quantity that E. T. Jaynes called "caliber" over all the possible leads to these dynamical laws. The principle of maximum caliber also leads to dynamical distribution functions that characterize the relative probabilities of different microtrajectories. A great source of recent interest in statistical dynamics has resulted from a new generation of single-particle and single-molecule experiments that make it possible to observe dynamics one trajectory at a time.
我们描述了一个简单的框架,用于教授构成输运动力学定律基础的原理:菲克扩散定律、傅里叶热流定律、牛顿粘性定律以及化学动力学的质量作用定律。类似于微观状态上熵的最大化导致玻尔兹曼分布和关于平衡的预测,在所有可能情况上最大化E. T. 杰恩斯所称的“口径”这一量会导出这些动力学定律。最大口径原理还会导出表征不同微观轨迹相对概率的动力学分布函数。新一代单粒子和单分子实验使得一次观察一个轨迹的动力学成为可能,这引发了近期对统计动力学的极大兴趣。