Suppr超能文献

用于小动物全身功能成像的时间门控微扰蒙特卡罗方法。

Time-gated perturbation Monte Carlo for whole body functional imaging in small animals.

作者信息

Chen Jin, Intes Xavier

机构信息

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

Opt Express. 2009 Oct 26;17(22):19566-79. doi: 10.1364/OE.17.019566.

Abstract

This paper explores a time-resolved functional imaging method based on Monte Carlo model for whole-body functional imaging of small animals. To improve the spatial resolution and quantitative accuracy of the functional map, a Bayesian hierarchical method with a high resolution spatial prior is applied to guide the optical reconstructions. Simulated data using the proposed approach are employed on an anatomically accurate mouse model where the optical properties range and volume limitations of the diffusion equation model exist. We investigate the performances of using time-gated data type and spatial priors to quantitatively image the functional parameters of multiple organs. Accurate reconstructions of the two main functional parameters of the blood volume and the relative oxygenation are demonstrated by using our method. Moreover, nonlinear optode settings guided by anatomical prior is proved to be critical to imaging small organs such as the heart.

摘要

本文探索了一种基于蒙特卡罗模型的时间分辨功能成像方法,用于小动物全身功能成像。为提高功能图谱的空间分辨率和定量准确性,应用具有高分辨率空间先验的贝叶斯分层方法来指导光学重建。使用所提出方法的模拟数据应用于一个解剖结构精确的小鼠模型,该模型存在扩散方程模型的光学特性范围和体积限制。我们研究了使用时间门控数据类型和空间先验对多个器官的功能参数进行定量成像的性能。通过我们的方法证明了对血容量和相对氧合这两个主要功能参数的准确重建。此外,由解剖学先验指导的非线性光极设置被证明对心脏等小器官成像至关重要。

相似文献

1
Time-gated perturbation Monte Carlo for whole body functional imaging in small animals.
Opt Express. 2009 Oct 26;17(22):19566-79. doi: 10.1364/OE.17.019566.
2
Quantitative small animal fluorescence tomography using an ultrafast gated image intensifier.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2675-8. doi: 10.1109/IEMBS.2006.259942.
4
Coupling X-ray and optical tomography systems for in vivo examination of small animals.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:3335-8. doi: 10.1109/IEMBS.2007.4353044.
7
Diffuse optical tomography with physiological and spatial a priori constraints.
Phys Med Biol. 2004 Jun 21;49(12):N155-63. doi: 10.1088/0031-9155/49/12/n01.
8
Combined magnetic resonance and bioluminescence imaging of live mice.
J Biomed Opt. 2007 May-Jun;12(3):034018. doi: 10.1117/1.2745298.
9
MicroCT-guided bioluminescence tomography based on the adaptive finite element tomographic algorithm.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:381-4. doi: 10.1109/IEMBS.2006.260762.

引用本文的文献

1
Rapid diffused optical imaging for accurate 3D estimation of subcutaneous tissue features.
iScience. 2025 Jan 23;28(2):111818. doi: 10.1016/j.isci.2025.111818. eCollection 2025 Feb 21.
2
Stochastic Gauss-Newton method for estimating absorption and scattering in optical tomography with the Monte Carlo method for light transport.
Biomed Opt Express. 2024 Jul 30;15(8):4925-4942. doi: 10.1364/BOE.528666. eCollection 2024 Aug 1.
3
A Novel Technique for Fluorescence Lifetime Tomography.
bioRxiv. 2024 Sep 22:2024.09.19.613888. doi: 10.1101/2024.09.19.613888.
4
Unrolled-DOT: an interpretable deep network for diffuse optical tomography.
J Biomed Opt. 2023 Mar;28(3):036002. doi: 10.1117/1.JBO.28.3.036002. Epub 2023 Mar 8.
5
6
Hyperspectral wide-field time domain single-pixel diffuse optical tomography platform.
Biomed Opt Express. 2018 Nov 15;9(12):6258-6272. doi: 10.1364/BOE.9.006258. eCollection 2018 Dec 1.
7
Direct approach to compute Jacobians for diffuse optical tomography using perturbation Monte Carlo-based photon "replay".
Biomed Opt Express. 2018 Sep 4;9(10):4588-4603. doi: 10.1364/BOE.9.004588. eCollection 2018 Oct 1.
8
Development of perturbation Monte Carlo methods for polarized light transport in a discrete particle scattering model.
Biomed Opt Express. 2016 Apr 28;7(5):2051-66. doi: 10.1364/BOE.7.002051. eCollection 2016 May 1.
9
Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation.
Biomed Opt Express. 2015 Dec 18;7(1):171-84. doi: 10.1364/BOE.7.000171. eCollection 2016 Jan 1.
10
Mesh Optimization for Monte Carlo-Based Optical Tomography.
Photonics. 2015 Jun;2(2):375-391. doi: 10.3390/photonics2020375. Epub 2015 Apr 9.

本文引用的文献

1
Time Domain Fluorescent Diffuse Optical Tomography: analytical expressions.
Opt Express. 2005 Apr 4;13(7):2263-75. doi: 10.1364/opex.13.002263.
3
White Monte Carlo for time-resolved photon migration.
J Biomed Opt. 2008 Jul-Aug;13(4):041304. doi: 10.1117/1.2950319.
4
Tutorial on diffuse light transport.
J Biomed Opt. 2008 Jul-Aug;13(4):041302. doi: 10.1117/1.2967535.
5
Improved accuracy in time-resolved diffuse reflectance spectroscopy.
Opt Express. 2008 Jul 7;16(14):10440-54. doi: 10.1364/oe.16.010440.
6
Imaging complex structures with diffuse light.
Opt Express. 2008 Mar 31;16(7):5048-60. doi: 10.1364/oe.16.005048.
7
Nonuniqueness in diffusion-based optical tomography.
Opt Lett. 1998 Jun 1;23(11):882-4. doi: 10.1364/ol.23.000882.
9
Noncontact fluorescence diffuse optical tomography of heterogeneous media.
Appl Opt. 2007 Aug 1;46(22):4896-906. doi: 10.1364/ao.46.004896.
10
Digimouse: a 3D whole body mouse atlas from CT and cryosection data.
Phys Med Biol. 2007 Feb 7;52(3):577-87. doi: 10.1088/0031-9155/52/3/003. Epub 2007 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验