Suppr超能文献

用于3D增材微制造的微砌体

Micro-masonry for 3D additive micromanufacturing.

作者信息

Keum Hohyun, Kim Seok

机构信息

Mechanical Science and Engineering, University of Illinois at Urbana-Champaign.

Mechanical Science and Engineering, University of Illinois at Urbana-Champaign;

出版信息

J Vis Exp. 2014 Aug 1(90):e51974. doi: 10.3791/51974.

Abstract

Transfer printing is a method to transfer solid micro/nanoscale materials (herein called 'inks') from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices.

摘要

转移印刷是一种通过利用弹性印章将固体微/纳米级材料(在此称为“墨水”)从其产生的基底转移到不同基底的方法。转移印刷能够集成异质材料,以制造出在诸如柔性和可拉伸太阳能电池及发光二极管阵列等近期先进器件中所发现的前所未有的结构或功能系统。虽然转移印刷在材料组装能力方面展现出独特特性,但使用粘合剂层或诸如在基底上沉积自组装单分子层(SAM)等表面改性来增强印刷过程,阻碍了其在微机电系统(MEMS)结构和器件的微组装中的广泛应用。为克服这一缺点,我们开发了一种先进的转移印刷模式,该模式仅通过控制表面接触面积来确定性地组装单个微观物体,而无需任何表面改变。不存在粘合剂层或其他改性以及随后的材料键合过程不仅确保了机械键合,还确保了组装材料之间的热连接和电连接,这进一步开启了其在构建特殊MEMS器件方面的各种应用。

相似文献

1
Micro-masonry for 3D additive micromanufacturing.
J Vis Exp. 2014 Aug 1(90):e51974. doi: 10.3791/51974.
2
Micro-LEGO for MEMS.
Micromachines (Basel). 2019 Apr 21;10(4):267. doi: 10.3390/mi10040267.
5
MEMS: Enabled Drug Delivery Systems.
Adv Healthc Mater. 2015 May;4(7):969-82. doi: 10.1002/adhm.201400772. Epub 2015 Feb 20.
6
Integrative technology-based approach of microelectromechanical systems (MEMS) for biosensing applications.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4475-8. doi: 10.1109/EMBC.2012.6346960.
7
8
Atomic calligraphy: the direct writing of nanoscale structures using a microelectromechanical system.
Nano Lett. 2013 Jul 10;13(7):3379-84. doi: 10.1021/nl401699w. Epub 2013 Jun 24.
9
Stretchable Substrates for the Assembly of Polymeric Microstructures.
Small. 2017 Feb;13(8). doi: 10.1002/smll.201603350. Epub 2016 Dec 16.
10
Review on the modeling of electrostatic MEMS.
Sensors (Basel). 2010;10(6):6149-71. doi: 10.3390/s100606149. Epub 2010 Jun 21.

本文引用的文献

1
Soft Lithography.
Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.
2
Electrical contact at the interface between silicon and transfer-printed gold films by eutectic joining.
ACS Appl Mater Interfaces. 2013 Jul 10;5(13):6061-5. doi: 10.1021/am4021236. Epub 2013 Jun 20.
3
The man who dared to think small.
Science. 1991 Nov 29;254(5036):1300. doi: 10.1126/science.254.5036.1300.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验