Martorell-Riera Alejandro, Segarra-Mondejar Marc, Muñoz Juan P, Ginet Vanessa, Olloquequi Jordi, Pérez-Clausell Jeús, Palacín Manuel, Reina Manuel, Puyal Julien, Zorzano Antonio, Soriano Francesc X
Department of Cell Biology, University of Barcelona, Barcelona, Spain CELLTEC-UB, University of Barcelona, Barcelona, Spain.
Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III, Madrid, Spain.
EMBO J. 2014 Oct 16;33(20):2388-407. doi: 10.15252/embj.201488327. Epub 2014 Aug 21.
Mitochondrial fusion and fission is a dynamic process critical for the maintenance of mitochondrial function and cell viability. During excitotoxicity neuronal mitochondria are fragmented, but the mechanism underlying this process is poorly understood. Here, we show that Mfn2 is the only member of the mitochondrial fusion/fission machinery whose expression is reduced in in vitro and in vivo models of excitotoxicity. Whereas in cortical primary cultures, Drp1 recruitment to mitochondria plays a primordial role in mitochondrial fragmentation in an early phase that can be reversed once the insult has ceased, Mfn2 downregulation intervenes in a delayed mitochondrial fragmentation phase that progresses even when the insult has ceased. Downregulation of Mfn2 causes mitochondrial dysfunction, altered calcium homeostasis, and enhanced Bax translocation to mitochondria, resulting in delayed neuronal death. We found that transcription factor MEF2 regulates basal Mfn2 expression in neurons and that excitotoxicity-dependent degradation of MEF2 causes Mfn2 downregulation. Thus, Mfn2 reduction is a late event in excitotoxicity and its targeting may help to reduce excitotoxic damage and increase the currently short therapeutic window in stroke.
线粒体融合与分裂是一个对维持线粒体功能和细胞活力至关重要的动态过程。在兴奋性毒性过程中,神经元线粒体发生碎片化,但这一过程背后的机制仍知之甚少。在此,我们表明Mfn2是线粒体融合/分裂机制中唯一在兴奋性毒性的体外和体内模型中表达降低的成员。在皮质原代培养物中,动力相关蛋白1(Drp1)募集到线粒体在早期线粒体碎片化过程中起主要作用,一旦损伤停止,这种碎片化可以逆转,而Mfn2下调则干预延迟的线粒体碎片化阶段,即使损伤停止,该阶段仍会进展。Mfn2下调会导致线粒体功能障碍、钙稳态改变以及促凋亡蛋白Bax向线粒体的转位增加,从而导致神经元延迟死亡。我们发现转录因子肌细胞增强因子2(MEF2)调节神经元中基础Mfn2的表达,并且MEF2的兴奋性毒性依赖性降解导致Mfn2下调。因此,Mfn2减少是兴奋性毒性中的一个晚期事件,靶向Mfn2可能有助于减少兴奋性毒性损伤并延长目前中风治疗的短暂窗口期。