Wang Y, Daniels M J
J Multivar Anal. 2014 Sep 1;130:21-26. doi: 10.1016/j.jmva.2014.04.026.
In this article, we propose a computationally efficient approach to estimate (large) -dimensional covariance matrices of ordered (or longitudinal) data based on an independent sample of size . To do this, we construct the estimator based on a -band partial autocorrelation matrix with the number of bands chosen using an exact multiple hypothesis testing procedure. This approach is considerably faster than many existing methods and only requires inversion of ( + 1)-dimensional covariance matrices. The resulting estimator is positive definite as long as (where can be larger than ). We make connections between this approach and banding the Cholesky factor of the modified Cholesky decomposition of the inverse covariance matrix (Wu and Pourahmadi, 2003) and show that the maximum likelihood estimator of the -band partial autocorrelation matrix is the same as the -band inverse Cholesky factor. We evaluate our estimator via extensive simulations and illustrate the approach using high-dimensional sonar data.
在本文中,我们提出了一种计算效率高的方法,用于基于大小为 的独立样本估计有序(或纵向)数据的(大)维协方差矩阵。为此,我们基于一个 -带偏自相关矩阵构建估计器,其中带的数量使用精确的多重假设检验程序来选择。这种方法比许多现有方法快得多,并且只需要对( + 1)维协方差矩阵求逆。只要 (其中 可以大于 ),所得估计器就是正定的。我们将这种方法与对逆协方差矩阵的修正Cholesky分解的Cholesky因子进行分块(Wu和Pourahmadi,2003)建立联系,并表明 -带偏自相关矩阵的最大似然估计器与 -带逆Cholesky因子相同。我们通过广泛的模拟评估我们的估计器,并使用高维声纳数据来说明该方法。