Suppr超能文献

用于有序数据的大型协方差矩阵的计算高效带状化以及与逆Cholesky因子带状化的联系。

Computationally efficient banding of large covariance matrices for ordered data and connections to banding the inverse Cholesky factor.

作者信息

Wang Y, Daniels M J

出版信息

J Multivar Anal. 2014 Sep 1;130:21-26. doi: 10.1016/j.jmva.2014.04.026.

Abstract

In this article, we propose a computationally efficient approach to estimate (large) -dimensional covariance matrices of ordered (or longitudinal) data based on an independent sample of size . To do this, we construct the estimator based on a -band partial autocorrelation matrix with the number of bands chosen using an exact multiple hypothesis testing procedure. This approach is considerably faster than many existing methods and only requires inversion of ( + 1)-dimensional covariance matrices. The resulting estimator is positive definite as long as (where can be larger than ). We make connections between this approach and banding the Cholesky factor of the modified Cholesky decomposition of the inverse covariance matrix (Wu and Pourahmadi, 2003) and show that the maximum likelihood estimator of the -band partial autocorrelation matrix is the same as the -band inverse Cholesky factor. We evaluate our estimator via extensive simulations and illustrate the approach using high-dimensional sonar data.

摘要

在本文中,我们提出了一种计算效率高的方法,用于基于大小为 的独立样本估计有序(或纵向)数据的(大)维协方差矩阵。为此,我们基于一个 -带偏自相关矩阵构建估计器,其中带的数量使用精确的多重假设检验程序来选择。这种方法比许多现有方法快得多,并且只需要对( + 1)维协方差矩阵求逆。只要 (其中 可以大于 ),所得估计器就是正定的。我们将这种方法与对逆协方差矩阵的修正Cholesky分解的Cholesky因子进行分块(Wu和Pourahmadi,2003)建立联系,并表明 -带偏自相关矩阵的最大似然估计器与 -带逆Cholesky因子相同。我们通过广泛的模拟评估我们的估计器,并使用高维声纳数据来说明该方法。

相似文献

2
Hypothesis testing for band size detection of high-dimensional banded precision matrices.
Biometrika. 2014 Jun;101(2):477-483. doi: 10.1093/biomet/asu006. Epub 2014 Apr 29.
3
A Cholesky-based estimation for large-dimensional covariance matrices.
J Appl Stat. 2019 Sep 10;47(6):1017-1030. doi: 10.1080/02664763.2019.1664424. eCollection 2020.
4
Modeling Covariance Matrices via Partial Autocorrelations.
J Multivar Anal. 2009 Nov 1;100(10):2352-2363. doi: 10.1016/j.jmva.2009.04.015.
5
Modeling the Cholesky factors of covariance matrices of multivariate longitudinal data.
J Multivar Anal. 2016 Mar;145:87-100. doi: 10.1016/j.jmva.2015.11.014. Epub 2015 Dec 14.
6
Convex Banding of the Covariance Matrix.
J Am Stat Assoc. 2016;111(514):834-845. doi: 10.1080/01621459.2015.1058265. Epub 2016 Aug 18.
8
Condition Number Regularized Covariance Estimation.
J R Stat Soc Series B Stat Methodol. 2013 Jun 1;75(3):427-450. doi: 10.1111/j.1467-9868.2012.01049.x.
9
ARMA Cholesky Factor Models for the Covariance Matrix of Linear Models.
Comput Stat Data Anal. 2017 Nov;115:267-280. doi: 10.1016/j.csda.2017.05.001. Epub 2017 May 18.
10
Shrinkage estimators for covariance matrices.
Biometrics. 2001 Dec;57(4):1173-84. doi: 10.1111/j.0006-341x.2001.01173.x.

引用本文的文献

本文引用的文献

1
On Consistency and Sparsity for Principal Components Analysis in High Dimensions.
J Am Stat Assoc. 2009 Jun 1;104(486):682-693. doi: 10.1198/jasa.2009.0121.
2
Modeling Covariance Matrices via Partial Autocorrelations.
J Multivar Anal. 2009 Nov 1;100(10):2352-2363. doi: 10.1016/j.jmva.2009.04.015.
3
Covariance-regularized regression and classification for high-dimensional problems.
J R Stat Soc Series B Stat Methodol. 2009 Feb 20;71(3):615-636. doi: 10.1111/j.1467-9868.2009.00699.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验