Daniels M J, Pourahmadi M
Department of Statistics, University of Florida.
J Multivar Anal. 2009 Nov 1;100(10):2352-2363. doi: 10.1016/j.jmva.2009.04.015.
We study the role of partial autocorrelations in the reparameterization and parsimonious modeling of a covariance matrix. The work is motivated by and tries to mimic the phenomenal success of the partial autocorrelations function (PACF) in model formulation, removing the positive-definiteness constraint on the autocorrelation function of a stationary time series and in reparameterizing the stationarity-invertibility domain of ARMA models. It turns out that once an order is fixed among the variables of a general random vector, then the above properties continue to hold and follows from establishing a one-to-one correspondence between a correlation matrix and its associated matrix of partial autocorrelations. Connections between the latter and the parameters of the modified Cholesky decomposition of a covariance matrix are discussed. Graphical tools similar to partial correlograms for model formulation and various priors based on the partial autocorrelations are proposed. We develop frequentist/Bayesian procedures for modelling correlation matrices, illustrate them using a real dataset, and explore their properties via simulations.
我们研究偏自相关在协方差矩阵的重新参数化和简约建模中的作用。这项工作的动机源于并试图模仿偏自相关函数(PACF)在模型构建方面的显著成功,消除对平稳时间序列自相关函数的正定约束,并对ARMA模型的平稳可逆域进行重新参数化。结果表明,一旦在一般随机向量的变量之间确定了一个顺序,那么上述性质仍然成立,并且通过在相关矩阵与其相关的偏自相关矩阵之间建立一一对应关系得出。讨论了后者与协方差矩阵的修正Cholesky分解参数之间的联系。提出了类似于用于模型构建的偏自相关图的图形工具以及基于偏自相关的各种先验。我们开发了用于相关矩阵建模的频率主义/贝叶斯程序,使用真实数据集对其进行说明,并通过模拟探索它们的性质。