Kohli Priya, Garcia Tanya P, Pourahmadi Mohsen
Department of Mathematics, Connecticut College, 270 Mohegan Avenue, New London, CT 06320, United States.
Department of Epidemiology and Biostatistics, Texas A&M Health Science Center, 1266 TAMU, College Station, TX 77843-1266, United States.
J Multivar Anal. 2016 Mar;145:87-100. doi: 10.1016/j.jmva.2015.11.014. Epub 2015 Dec 14.
Modeling the covariance matrix of multivariate longitudinal data is more challenging as compared to its univariate counterpart due to the presence of correlations among multiple responses. The modified Cholesky decomposition reduces the task of covariance modeling into parsimonious modeling of its two matrix factors: the regression coefficient matrices and the innovation covariance matrices. These parameters are statistically interpretable, however ensuring positive-definiteness of several (innovation) covariance matrices presents itself as a new challenge. We address this problem using a subclass of Anderson's (1973) and model several covariance matrices using linear combinations of known positive-definite basis matrices with unknown non-negative scalar coefficients. A novelty of this approach is that positive-definiteness is guaranteed by construction; it removes a drawback of Anderson's model and hence makes linear covariance models more realistic and viable in practice. Maximum likelihood estimates are computed using a simple iterative majorization-minimization algorithm. The estimators are shown to be asymptotically normal and consistent. Simulation and a data example illustrate the applicability of the proposed method in providing good models for the covariance structure of a multivariate longitudinal data.
与单变量纵向数据相比,多元纵向数据协方差矩阵的建模更具挑战性,因为多个响应之间存在相关性。改进的Cholesky分解将协方差建模任务简化为对其两个矩阵因子进行简约建模:回归系数矩阵和创新协方差矩阵。这些参数具有统计学解释性,然而,确保几个(创新)协方差矩阵的正定性质带来了新的挑战。我们使用Anderson(1973)的一个子类来解决这个问题,并使用具有未知非负标量系数的已知正定基矩阵的线性组合对几个协方差矩阵进行建模。这种方法的一个新颖之处在于,通过构造保证了正定性质;它消除了Anderson模型的一个缺点,从而使线性协方差模型在实践中更现实、更可行。使用简单的迭代主元最小化算法计算最大似然估计。结果表明,估计量是渐近正态且一致的。模拟和一个数据示例说明了所提出方法在为多元纵向数据的协方差结构提供良好模型方面的适用性。