Suppr超能文献

一种基于Hadoop的预测潜在有效药物组合的方法。

A hadoop-based method to predict potential effective drug combination.

作者信息

Sun Yifan, Xiong Yi, Xu Qian, Wei Dongqing

机构信息

State Key Laboratory of Microbial Metabolism and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Biomed Res Int. 2014;2014:196858. doi: 10.1155/2014/196858. Epub 2014 Jul 23.

Abstract

Combination drugs that impact multiple targets simultaneously are promising candidates for combating complex diseases due to their improved efficacy and reduced side effects. However, exhaustive screening of all possible drug combinations is extremely time-consuming and impractical. Here, we present a novel Hadoop-based approach to predict drug combinations by taking advantage of the MapReduce programming model, which leads to an improvement of scalability of the prediction algorithm. By integrating the gene expression data of multiple drugs, we constructed data preprocessing and the support vector machines and naïve Bayesian classifiers on Hadoop for prediction of drug combinations. The experimental results suggest that our Hadoop-based model achieves much higher efficiency in the big data processing steps with satisfactory performance. We believed that our proposed approach can help accelerate the prediction of potential effective drugs with the increasing of the combination number at an exponential rate in future. The source code and datasets are available upon request.

摘要

由于疗效提高且副作用减少,同时影响多个靶点的联合药物有望成为对抗复杂疾病的候选药物。然而,对所有可能的药物组合进行详尽筛选极其耗时且不切实际。在此,我们提出一种基于Hadoop的新颖方法,通过利用MapReduce编程模型来预测药物组合,这使得预测算法的可扩展性得到提高。通过整合多种药物的基因表达数据,我们在Hadoop上构建了数据预处理以及支持向量机和朴素贝叶斯分类器,用于预测药物组合。实验结果表明,我们基于Hadoop的模型在大数据处理步骤中实现了更高的效率,性能令人满意。我们相信,随着未来组合数量呈指数级增长,我们提出的方法能够帮助加速潜在有效药物的预测。源代码和数据集可根据要求提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d5a/4134802/5b4bc1784dad/BMRI2014-196858.alg.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验