Suppr超能文献

利用一组简化的加权平均特征来提高从 3D 结构预测 DNA 结合残基的能力。

Exploiting a reduced set of weighted average features to improve prediction of DNA-binding residues from 3D structures.

机构信息

School of Computer, Wuhan University, Wuhan, China.

出版信息

PLoS One. 2011;6(12):e28440. doi: 10.1371/journal.pone.0028440. Epub 2011 Dec 8.

Abstract

Predicting DNA-binding residues from a protein three-dimensional structure is a key task of computational structural proteomics. In the present study, based on machine learning technology, we aim to explore a reduced set of weighted average features for improving prediction of DNA-binding residues on protein surfaces. Via constructing the spatial environment around a DNA-binding residue, a novel weighting factor is first proposed to quantify the distance-dependent contribution of each neighboring residue in determining the location of a binding residue. Then, a weighted average scheme is introduced to represent the surface patch of the considering residue. Finally, the classifier is trained on the reduced set of these weighted average features, consisting of evolutionary profile, interface propensity, betweenness centrality and solvent surface area of side chain. Experimental results on 5-fold cross validation and independent tests indicate that the new feature set are effective to describe DNA-binding residues and our approach has significantly better performance than two previous methods. Furthermore, a brief case study suggests that the weighted average features are powerful for identifying DNA-binding residues and are promising for further study of protein structure-function relationship. The source code and datasets are available upon request.

摘要

从蛋白质三维结构预测 DNA 结合残基是计算结构蛋白质组学的关键任务。在本研究中,我们基于机器学习技术,旨在探索一组经过简化的加权平均特征,以提高对蛋白质表面 DNA 结合残基的预测能力。通过构建 DNA 结合残基周围的空间环境,首先提出了一种新的加权因子,以量化每个相邻残基在确定结合残基位置方面的距离相关贡献。然后,引入加权平均方案来表示考虑残基的表面斑块。最后,基于进化轮廓、界面倾向性、介数中心度和侧链溶剂表面积,在 5 折交叉验证和独立测试的数据集上对分类器进行训练。实验结果表明,新的特征集能够有效地描述 DNA 结合残基,并且我们的方法比以前的两种方法具有更好的性能。此外,一个简要的案例研究表明,加权平均特征对于识别 DNA 结合残基非常有效,并且对于进一步研究蛋白质结构-功能关系具有很大的潜力。源代码和数据集可根据要求提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b362/3234263/6babab70e19b/pone.0028440.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验