Suppr超能文献

一种基于CRISPR的单基因组位点蛋白质组分析方法。

A CRISPR-based approach for proteomic analysis of a single genomic locus.

作者信息

Waldrip Zachary J, Byrum Stephanie D, Storey Aaron J, Gao Jun, Byrd Alicia K, Mackintosh Samuel G, Wahls Wayne P, Taverna Sean D, Raney Kevin D, Tackett Alan J

机构信息

University of Arkansas for Medical Sciences; Department of Biochemistry and Molecular Biology; Little Rock, AR USA.

Department of Pharmacology and Molecular Sciences; Johns Hopkins University School of Medicine; Baltimore, MD USA.

出版信息

Epigenetics. 2014 Sep;9(9):1207-11. doi: 10.4161/epi.29919. Epub 2014 Jul 18.

Abstract

Any given chromosomal activity (e.g., transcription) is governed predominantly by the local epiproteome. However, defining local epiproteomes has been limited by a lack of effective technologies to isolate discrete sections of chromatin and to identify with precision specific proteins and histone posttranslational modifications (PTMs). We report the use of the Cas9 and guide RNA (gRNA) components of the CRISPR system for gRNA-directed purification of a discrete section of chromatin. Quantitative mass spectrometry provides for unambiguous identification of proteins and histone PTMs specifically associated with the enriched chromatin. This CRISPR-based Chromatin Affinity Purification with Mass Spectrometry (CRISPR-ChAP-MS) approach revealed changes in the local epiproteome of a promoter during activation of transcription. CRISPR-ChAP-MS thus has broad applications for discovering molecular components and dynamic regulation of any in vivo activity at a given chromosomal location.

摘要

任何特定的染色体活动(如转录)主要由局部表观蛋白质组控制。然而,由于缺乏有效的技术来分离染色质的离散部分并精确鉴定特定蛋白质和组蛋白翻译后修饰(PTM),对局部表观蛋白质组的定义一直受到限制。我们报告了使用CRISPR系统的Cas9和引导RNA(gRNA)组件进行gRNA导向的染色质离散部分的纯化。定量质谱能够明确鉴定与富集染色质特异性相关的蛋白质和组蛋白PTM。这种基于CRISPR的质谱染色质亲和纯化(CRISPR-ChAP-MS)方法揭示了转录激活过程中启动子局部表观蛋白质组的变化。因此,CRISPR-ChAP-MS在发现给定染色体位置的任何体内活动的分子成分和动态调控方面具有广泛的应用。

相似文献

1
A CRISPR-based approach for proteomic analysis of a single genomic locus.
Epigenetics. 2014 Sep;9(9):1207-11. doi: 10.4161/epi.29919. Epub 2014 Jul 18.
2
Purification of a specific native genomic locus for proteomic analysis.
Nucleic Acids Res. 2013 Nov;41(20):e195. doi: 10.1093/nar/gkt822. Epub 2013 Sep 11.
3
Purification of specific chromatin loci for proteomic analysis.
Methods Mol Biol. 2015;1228:83-92. doi: 10.1007/978-1-4939-1680-1_8.
4
ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus.
Cell Rep. 2012 Jul 26;2(1):198-205. doi: 10.1016/j.celrep.2012.06.019. Epub 2012 Jul 20.
5
Development of Artificial System to Induce Chromatin Loosening in .
Biomolecules. 2022 Aug 18;12(8):1138. doi: 10.3390/biom12081138.
7
Decoding the chromatin proteome of a single genomic locus by DNA sequencing.
PLoS Biol. 2018 Jul 13;16(7):e2005542. doi: 10.1371/journal.pbio.2005542. eCollection 2018 Jul.
8
Proteomic characterization of the arsenic response locus in S. cerevisiae.
Epigenetics. 2019 Feb;14(2):130-145. doi: 10.1080/15592294.2019.1580110. Epub 2019 Mar 1.

引用本文的文献

2
The chaperone protein p32 stabilizes HIV-1 Tat and strengthens the p-TEFb/RNAPII/TAR complex promoting HIV transcription elongation.
Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2217476120. doi: 10.1073/pnas.2217476120. Epub 2022 Dec 30.
3
Dissecting Locus-Specific Chromatin Interactions by CRISPR CAPTURE.
Methods Mol Biol. 2023;2599:69-97. doi: 10.1007/978-1-0716-2847-8_7.
4
Catchet-MS identifies IKZF1-targeting thalidomide analogues as novel HIV-1 latency reversal agents.
Nucleic Acids Res. 2022 Jun 10;50(10):5577-5598. doi: 10.1093/nar/gkac407.
5
Applications of CRISPR-Cas Technologies to Proteomics.
Genes (Basel). 2021 Nov 12;12(11):1790. doi: 10.3390/genes12111790.
6
Protein-DNA/RNA Interactions: An Overview of Investigation Methods in the -Omics Era.
J Proteome Res. 2021 Jun 4;20(6):3018-3030. doi: 10.1021/acs.jproteome.1c00074. Epub 2021 May 7.
9
Genome-wide Cas9 binding specificity in .
PeerJ. 2020 Jul 29;8:e9442. doi: 10.7717/peerj.9442. eCollection 2020.
10
Exploring the virulence gene interactome with CRISPR/dCas9 in the human malaria parasite.
Mol Syst Biol. 2020 Aug;16(8):e9569. doi: 10.15252/msb.20209569.

本文引用的文献

1
Compositional and structural analysis of selected chromosomal domains from Saccharomyces cerevisiae.
Nucleic Acids Res. 2014 Jan;42(1):e2. doi: 10.1093/nar/gkt891. Epub 2013 Oct 7.
2
Cas9 as a versatile tool for engineering biology.
Nat Methods. 2013 Oct;10(10):957-63. doi: 10.1038/nmeth.2649.
3
Purification of a specific native genomic locus for proteomic analysis.
Nucleic Acids Res. 2013 Nov;41(20):e195. doi: 10.1093/nar/gkt822. Epub 2013 Sep 11.
4
Quantitative Proteomics Identifies Activation of Hallmark Pathways of Cancer in Patient Melanoma.
J Proteomics Bioinform. 2013 Mar 1;6(3):43-50. doi: 10.4172/jpb.1000260.
6
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.
Nat Biotechnol. 2013 Sep;31(9):822-6. doi: 10.1038/nbt.2623. Epub 2013 Jun 23.
7
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems.
Nucleic Acids Res. 2013 Apr;41(7):4336-43. doi: 10.1093/nar/gkt135. Epub 2013 Mar 4.
8
RNA-guided editing of bacterial genomes using CRISPR-Cas systems.
Nat Biotechnol. 2013 Mar;31(3):233-9. doi: 10.1038/nbt.2508. Epub 2013 Jan 29.
9
ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus.
Cell Rep. 2012 Jul 26;2(1):198-205. doi: 10.1016/j.celrep.2012.06.019. Epub 2012 Jul 20.
10
Quantitative analysis of histone exchange for transcriptionally active chromatin.
J Clin Bioinforma. 2011 Jul 7;1(1):17. doi: 10.1186/2043-9113-1-17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验