Suppr超能文献

简单衣壳蛋白的设计与自组装用于人工病毒。

Design and self-assembly of simple coat proteins for artificial viruses.

机构信息

1] Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands [2] Dutch Polymer Institute, John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands [3].

1] Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands [2] Center for Soft Matter Research, Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA.

出版信息

Nat Nanotechnol. 2014 Sep;9(9):698-702. doi: 10.1038/nnano.2014.169. Epub 2014 Aug 24.

Abstract

Viruses are among the simplest biological systems and are highly effective vehicles for the delivery of genetic material into susceptible host cells. Artificial viruses can be used as model systems for providing insights into natural viruses and can be considered a testing ground for developing artificial life. Moreover, they are used in biomedical and biotechnological applications, such as targeted delivery of nucleic acids for gene therapy and as scaffolds in material science. In a natural setting, survival of viruses requires that a significant fraction of the replicated genomes be completely protected by coat proteins. Complete protection of the genome is ensured by a highly cooperative supramolecular process between the coat proteins and the nucleic acids, which is based on reversible, weak and allosteric interactions only. However, incorporating this type of supramolecular cooperativity into artificial viruses remains challenging. Here, we report a rational design for a self-assembling minimal viral coat protein based on simple polypeptide domains. Our coat protein features precise control over the cooperativity of its self-assembly with single DNA molecules to finally form rod-shaped virus-like particles. We confirm the validity of our design principles by showing that the kinetics of self-assembly of our virus-like particles follows a previous model developed for tobacco mosaic virus. We show that our virus-like particles protect DNA against enzymatic degradation and transfect cells with considerable efficiency, making them promising delivery vehicles.

摘要

病毒是最简单的生物系统之一,是将遗传物质高效递送到易感宿主细胞的载体。人工病毒可用作提供对天然病毒深入了解的模型系统,也可被视为开发人工生命的试验场。此外,它们被应用于生物医学和生物技术领域,如核酸的靶向递送至基因治疗,以及在材料科学中的支架。在自然环境中,病毒的存活需要大量复制的基因组被衣壳蛋白完全保护。基因组的完全保护是通过衣壳蛋白和核酸之间高度协作的超分子过程来实现的,这种过程仅基于可逆的、弱的和变构的相互作用。然而,将这种类型的超分子协同作用纳入人工病毒仍然具有挑战性。在这里,我们报道了一种基于简单多肽结构域的自组装最小化病毒衣壳蛋白的合理设计。我们的衣壳蛋白对其与单链 DNA 分子的自组装的协同作用具有精确的控制,最终形成杆状病毒样颗粒。我们通过展示我们的病毒样颗粒的自组装动力学符合先前为烟草花叶病毒开发的模型,证实了我们设计原则的有效性。我们表明,我们的病毒样颗粒能够保护 DNA 免受酶的降解,并具有相当高的转染细胞效率,使它们成为有前途的递药载体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验