Suppr超能文献

相似文献

3
Osteopontin induces airway remodeling and lung fibroblast activation in a murine model of asthma.
Am J Respir Cell Mol Biol. 2009 Sep;41(3):290-6. doi: 10.1165/rcmb.2008-0307OC. Epub 2009 Jan 16.
5
Caffeic acid phenethyl ester alleviates asthma by regulating the airway microenvironment via the ROS-responsive MAPK/Akt pathway.
Free Radic Biol Med. 2016 Dec;101:163-175. doi: 10.1016/j.freeradbiomed.2016.09.012. Epub 2016 Oct 13.
6
Different anti-remodeling effect of nilotinib and fluticasone in a chronic asthma model.
Korean J Intern Med. 2016 Nov;31(6):1150-1158. doi: 10.3904/kjim.2015.002. Epub 2016 Oct 20.
8
Effects of montelukast on subepithelial/peribronchial fibrosis in a murine model of ovalbumin induced chronic asthma.
Int Immunopharmacol. 2013 Nov;17(3):867-73. doi: 10.1016/j.intimp.2013.09.017. Epub 2013 Oct 11.
9
Inhibition of high-mobility group box 1 in lung reduced airway inflammation and remodeling in a mouse model of chronic asthma.
Biochem Pharmacol. 2013 Oct 1;86(7):940-9. doi: 10.1016/j.bcp.2013.08.003. Epub 2013 Aug 12.

引用本文的文献

1
The Role of Alarmins in the Pathogenesis of Asthma.
Biomolecules. 2025 Jul 11;15(7):996. doi: 10.3390/biom15070996.
2
Mechanism of miR-130b-3p in relieving airway inflammation in asthma through HMGB1-TLR4-DRP1 axis.
Cell Mol Life Sci. 2024 Dec 20;82(1):9. doi: 10.1007/s00018-024-05529-0.
4
Regulation of Airway Epithelial-Derived Alarmins in Asthma: Perspectives for Therapeutic Targets.
Biomedicines. 2024 Oct 11;12(10):2312. doi: 10.3390/biomedicines12102312.
5
HMGB1 derived from lung epithelial cells after cobalt nanoparticle exposure promotes the activation of lung fibroblasts.
Nanotoxicology. 2024 Sep;18(6):565-581. doi: 10.1080/17435390.2024.2404074. Epub 2024 Sep 19.
6
The RAGE Axis: A Relevant Inflammatory Hub in Human Diseases.
Biomolecules. 2024 Mar 28;14(4):412. doi: 10.3390/biom14040412.
7
Impact of obesity on airway remodeling in asthma: pathophysiological insights and clinical implications.
Front Allergy. 2024 Mar 18;5:1365801. doi: 10.3389/falgy.2024.1365801. eCollection 2024.
8
Inhibition of xanthine oxidase by allopurinol suppresses HMGB1 secretion and ameliorates experimental asthma.
Redox Biol. 2024 Apr;70:103021. doi: 10.1016/j.redox.2023.103021. Epub 2024 Jan 5.
9
HMGB1/RAGE Signaling Regulates Th17/IL-17 and Its Role in Bronchial Epithelial-Mesenchymal Transformation.
Curr Mol Med. 2024;24(11):1401-1412. doi: 10.2174/0115665240249953231024060610.
10
Anti-S100A4 antibody administration alleviates bronchial epithelial-mesenchymal transition in asthmatic mice.
Open Med (Wars). 2023 Oct 17;18(1):20220622. doi: 10.1515/med-2022-0622. eCollection 2023.

本文引用的文献

1
Inhibition of high-mobility group box 1 in lung reduced airway inflammation and remodeling in a mouse model of chronic asthma.
Biochem Pharmacol. 2013 Oct 1;86(7):940-9. doi: 10.1016/j.bcp.2013.08.003. Epub 2013 Aug 12.
3
The role of high-mobility group box-1 (HMGB1) in the pathogenesis of asthma.
Clin Exp Allergy. 2012 Jun;42(6):958-65. doi: 10.1111/j.1365-2222.2012.03998.x.
4
Strategies of mucosal immunotherapy for allergic diseases.
Cell Mol Immunol. 2011 Nov;8(6):453-61. doi: 10.1038/cmi.2011.17. Epub 2011 Jun 13.
5
Chronic OVA allergen challenged TNF p55/p75 receptor deficient mice have reduced airway remodeling.
Int Immunopharmacol. 2011 Aug;11(8):1038-44. doi: 10.1016/j.intimp.2011.02.024. Epub 2011 Mar 5.
8
Role of transforming growth factor-β in airway remodeling in asthma.
Am J Respir Cell Mol Biol. 2011 Feb;44(2):127-33. doi: 10.1165/rcmb.2010-0027TR. Epub 2010 Jun 4.
10
Expression of high-mobility group box 1 and of receptor for advanced glycation end products in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med. 2010 May 1;181(9):917-27. doi: 10.1164/rccm.200903-0340OC. Epub 2010 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验