Lamb Jacob J, Hill Ryan E, Eaton-Rye Julian J, Hohmann-Marriott Martin F
Department of Biotechnology, PhotoSynLab, Norwegian University of Science and Technology, Trondheim, Norway.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
PLoS One. 2014 Aug 26;9(8):e105761. doi: 10.1371/journal.pone.0105761. eCollection 2014.
Cyanobacteria require large quantities of iron to maintain their photosynthetic machinery; however, in most environments iron is present in the form of insoluble iron oxides. Whether cyanobacteria can utilize these sources of iron, and the potential molecular mechanisms involved remains to be defined. There is increasing evidence that pili can facilitate electron donation to extracellular electron acceptors, like iron oxides in non-photosynthetic bacteria. In these organisms, the donation of electrons to iron oxides is thought to be crucial for maintaining respiration in the absence of oxygen. Our study investigates if PilA1 (major pilin protein) may also provide a mechanism to convert insoluble ferric iron into soluble ferrous iron. Growth experiments supported by spectroscopic data of a strain deficient in pilA1 indicate that the presence of the pilA1 gene enhances the ability to grow on iron oxides. These observations suggest a novel function of PilA1 in cyanobacterial iron acquisition.
蓝藻需要大量的铁来维持其光合作用机制;然而,在大多数环境中,铁以不溶性铁氧化物的形式存在。蓝藻是否能够利用这些铁源以及其中潜在的分子机制仍有待确定。越来越多的证据表明,菌毛可以促进向细胞外电子受体的电子传递,如非光合细菌中的铁氧化物。在这些生物体中,向铁氧化物的电子传递被认为对于在无氧条件下维持呼吸至关重要。我们的研究调查了菌毛蛋白A1(主要菌毛蛋白)是否也可能提供一种将不溶性三价铁转化为可溶性二价铁的机制。由菌毛蛋白A1缺陷菌株的光谱数据支持的生长实验表明,菌毛蛋白A1基因的存在增强了在铁氧化物上生长的能力。这些观察结果表明菌毛蛋白A1在蓝藻铁获取中具有新功能。