School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, People's Republic of China.
Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.
Appl Environ Microbiol. 2018 Sep 17;84(19). doi: 10.1128/AEM.01512-18. Print 2018 Oct 1.
Cyanobacteria are foundational drivers of global nutrient cycling, with high intracellular iron (Fe) requirements. Fe is found at extremely low concentrations in aquatic systems, however, and the ways in which cyanobacteria take up Fe are largely unknown, especially the initial step in Fe transport across the outer membrane. Here, we identified one TonB protein and four TonB-dependent transporters (TBDTs) of the energy-requiring Fe acquisition system and six porins of the passive diffusion Fe uptake system in the model cyanobacterium sp. strain PCC 6803. The results experimentally demonstrated that TBDTs not only participated in organic ferri-siderophore uptake but also in inorganic free Fe (Fe') acquisition. Fe uptake rate measurements showed that a TBDT quadruple mutant acquired Fe at a lower rate than the wild type and lost nearly all ability to take up ferri-siderophores, indicating that TBDTs are critical for siderophore uptake. However, the mutant retained the ability to take up Fe' at 42% of the wild-type Fe' uptake rate, suggesting additional pathways of Fe' acquisition besides TBDTs, likely by porins. Mutations in four of the six porin-encoding genes produced a low-Fe-sensitive phenotype, while a mutation in all six genes was lethal to cell survival. These diverse outer membrane Fe uptake pathways reflect cyanobacterial evolution and adaptation under a range of Fe regimes across aquatic systems. Cyanobacteria are globally important primary producers and contribute about 25% of global CO fixation. Low Fe bioavailability in surface waters is thought to limit the primary productivity in as much as 40% of the global ocean. The Fe acquisition strategies that cyanobacteria have evolved to overcome Fe deficiency remain poorly characterized. We experimentally characterized the key players and the cooperative work mode of two Fe uptake pathways, including an active uptake pathway and a passive diffusion pathway in the model cyanobacterium sp. PCC 6803. Our finding proved that cyanobacteria use ferri-siderophore transporters to take up Fe', and they shed light on the adaptive mechanisms of cyanobacteria to cope with widespread Fe deficiency across aquatic environments.
蓝藻是全球养分循环的基础驱动因素,其细胞内对铁 (Fe) 的需求量很高。然而,Fe 在水生系统中的浓度极低,蓝藻获取 Fe 的方式在很大程度上仍不清楚,特别是外膜上 Fe 转运的初始步骤。在这里,我们在模式蓝藻 sp. PCC 6803 中鉴定了一个 TonB 蛋白和四个 TonB 依赖的转运体 (TBDTs) ,它们属于能量需求型 Fe 摄取系统,还有六个孔蛋白,属于被动扩散型 Fe 摄取系统。实验结果表明,TBDTs 不仅参与有机铁载体的摄取,还参与无机游离 Fe(Fe')的摄取。Fe 摄取速率的测量表明,TBDT 四重突变体的 Fe 摄取速率低于野生型,几乎丧失了摄取铁载体的能力,这表明 TBDTs 对铁载体的摄取至关重要。然而,突变体仍以野生型 Fe'摄取速率的 42%的速率摄取 Fe',这表明除了 TBDTs 之外,还存在其他 Fe'摄取途径,可能是通过孔蛋白。在六个编码孔蛋白的基因中,有四个基因的突变产生了低 Fe 敏感表型,而所有六个基因的突变则对细胞存活是致命的。这些不同的外膜 Fe 摄取途径反映了蓝藻在水生系统中各种 Fe 环境下的进化和适应。蓝藻是全球重要的初级生产者,约占全球 CO 固定量的 25%。表层水中的低 Fe 生物可利用性被认为限制了全球海洋中多达 40%的初级生产力。蓝藻为克服 Fe 缺乏而进化出的 Fe 摄取策略仍知之甚少。我们通过实验对两个 Fe 摄取途径的关键组成部分及其协同工作模式进行了表征,这两个途径包括模型蓝藻 sp. PCC 6803 中的主动摄取途径和被动扩散途径。我们的发现证明了蓝藻利用铁载体转运蛋白摄取 Fe',并揭示了蓝藻适应水生环境中广泛的 Fe 缺乏的适应机制。