Benech Juan C, Benech Nicolás, Zambrana Ana I, Rauschert Inés, Bervejillo Verónica, Oddone Natalia, Damián Juan P
Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay;
Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; and.
Am J Physiol Cell Physiol. 2014 Nov 15;307(10):C910-9. doi: 10.1152/ajpcell.00192.2013. Epub 2014 Aug 27.
Stiffness of live cardiomyocytes isolated from control and diabetic mice was measured using the atomic force microscopy nanoindentation method. Type 1 diabetes was induced in mice by streptozotocin administration. Histological images of myocardium from mice that were diabetic for 3 mo showed disorderly lineup of myocardial cells, irregularly sized cell nuclei, and fragmented and disordered myocardial fibers with interstitial collagen accumulation. Phalloidin-stained cardiomyocytes isolated from diabetic mice showed altered (i.e., more irregular and diffuse) actin filament organization compared with cardiomyocytes from control mice. Sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a) pump expression was reduced in homogenates obtained from the left ventricle of diabetic animals compared with age-matched controls. The apparent elastic modulus (AEM) for live control or diabetic isolated cardiomyocytes was measured using the atomic force microscopy nanoindentation method in Tyrode buffer solution containing 1.8 mM Ca(2+) and 5.4 mM KCl (physiological condition), 100 nM Ca(2+) and 5.4 mM KCl (low extracellular Ca(2+) condition), or 1.8 mM Ca(2+) and 140 mM KCl (contraction condition). In the physiological condition, the mean AEM was 112% higher for live diabetic than control isolated cardiomyocytes (91 ± 14 vs. 43 ± 7 kPa). The AEM was also significantly higher in diabetic than control cardiomyocytes in the low extracellular Ca(2+) and contraction conditions. These findings suggest that the material properties of live cardiomyocytes were affected by diabetes, resulting in stiffer cells, which very likely contribute to high diastolic LV stiffness, which has been observed in vivo in some diabetes mellitus patients.
使用原子力显微镜纳米压痕法测量从对照小鼠和糖尿病小鼠分离的活心肌细胞的硬度。通过给予链脲佐菌素诱导小鼠患1型糖尿病。对患糖尿病3个月的小鼠的心肌组织学图像显示,心肌细胞排列紊乱、细胞核大小不规则,心肌纤维断裂且紊乱,伴有间质胶原积累。与对照小鼠的心肌细胞相比,从糖尿病小鼠分离的经鬼笔环肽染色的心肌细胞显示肌动蛋白丝组织改变(即更不规则和弥散)。与年龄匹配的对照相比,从糖尿病动物左心室获得的匀浆中肌浆网/内质网Ca(2+)-ATP酶(SERCA2a)泵的表达降低。在含有1.8 mM Ca(2+)和5.4 mM KCl的Tyrode缓冲溶液(生理条件)、100 nM Ca(2+)和5.4 mM KCl(低细胞外Ca(2+)条件)或1.8 mM Ca(2+)和140 mM KCl(收缩条件)下,使用原子力显微镜纳米压痕法测量活的对照或糖尿病分离心肌细胞的表观弹性模量(AEM)。在生理条件下,活的糖尿病分离心肌细胞的平均AEM比对照分离心肌细胞高112%(91±14 vs. 43±7 kPa)。在低细胞外Ca(2+)和收缩条件下,糖尿病心肌细胞的AEM也显著高于对照心肌细胞。这些发现表明,活心肌细胞的材料特性受糖尿病影响,导致细胞更硬,这很可能导致左心室舒张期硬度升高,这在一些糖尿病患者体内已被观察到。