Suppr超能文献

隐马尔可夫主题模型:一种语义表征的概率模型。

The hidden Markov Topic model: a probabilistic model of semantic representation.

作者信息

Andrews Mark, Vigliocco Gabriella

机构信息

Department of Cognitive, Perceptual, and Brain Sciences, Division of Psychology and Language Sciences, University College London.

出版信息

Top Cogn Sci. 2010 Jan;2(1):101-13. doi: 10.1111/j.1756-8765.2009.01074.x.

Abstract

In this paper, we describe a model that learns semantic representations from the distributional statistics of language. This model, however, goes beyond the common bag-of-words paradigm, and infers semantic representations by taking into account the inherent sequential nature of linguistic data. The model we describe, which we refer to as a Hidden Markov Topics model, is a natural extension of the current state of the art in Bayesian bag-of-words models, that is, the Topics model of Griffiths, Steyvers, and Tenenbaum (2007), preserving its strengths while extending its scope to incorporate more fine-grained linguistic information.

摘要

在本文中,我们描述了一种从语言的分布统计中学习语义表示的模型。然而,该模型超越了常见的词袋范式,通过考虑语言数据固有的顺序性质来推断语义表示。我们所描述的模型,称为隐马尔可夫主题模型,是贝叶斯词袋模型当前技术水平的自然扩展,即格里菲思、斯泰弗斯和特南鲍姆(2007年)的主题模型,在保留其优势的同时扩展其范围以纳入更细粒度的语言信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验