Suppr超能文献

通过异构图卷积网络预测共词链接。

Predicting co-word links via heterogeneous graph convolutional networks.

作者信息

Li Yangmin, Zhang Xin, Bai Xin, Bai Sen, Jiang Zhengang

机构信息

School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, 130000, China.

Research Department, Huawei Technologies Co. Ltd, Hangzhou, 310000, China.

出版信息

Sci Rep. 2025 Jul 2;15(1):23143. doi: 10.1038/s41598-025-05853-w.

Abstract

Co-word analysis, which explores the co-occurrence of key terminology within a specific field, is a valuable tool for identifying research themes and their networks. Leveraging the booming machine learning models, link prediction in co-word networks makes it possible to discover potential interactions between research themes and reveal emerging trends. Nevertheless, few existing methods have explored end-to-end deep models, impeded by the limitations of text graph models in learning both word co-occurrence and word-document relations implicit in co-word networks simultaneously. In this work, we propose to use a heterogeneous graph convolutional network (GCN) modeling to jointly learn word embeddings and document embeddings directly from co-word networks, incorporating document-specific information. The learning model is supervised by the binary labels for the existence of co-word links. Extensive experiments have been conducted on the Web of Science dataset from Information Science and Library Science. Experimental results show that the AUC value of our GCN-based approach is [Formula: see text], whereas the AUC value of the best traditional machine learning method is [Formula: see text].

摘要

共词分析是一种用于识别研究主题及其网络的重要工具,它探究特定领域内关键术语的共现情况。利用蓬勃发展的机器学习模型,共词网络中的链接预测能够发现研究主题之间的潜在相互作用,并揭示新出现的趋势。然而,由于文本图模型在同时学习共词网络中隐含的词共现和词-文档关系方面存在局限性,现有的方法很少探索端到端的深度模型。在这项工作中,我们建议使用异构图卷积网络(GCN)建模,直接从共词网络中联合学习词嵌入和文档嵌入,并纳入特定文档的信息。该学习模型由共词链接存在的二元标签进行监督。我们在来自信息科学与图书馆学领域的Web of Science数据集上进行了广泛的实验。实验结果表明,我们基于GCN的方法的AUC值为[公式:见原文],而最佳传统机器学习方法的AUC值为[公式:见原文]。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验