Suppr超能文献

在语义空间模型中编码序列信息:比较全息压缩表征与随机排列

Encoding sequential information in semantic space models: comparing holographic reduced representation and random permutation.

作者信息

Recchia Gabriel, Sahlgren Magnus, Kanerva Pentti, Jones Michael N

机构信息

University of Cambridge, Cambridge CB2 1TN, UK.

Swedish Institute of Computer Science, 164 29 Kista, Sweden.

出版信息

Comput Intell Neurosci. 2015;2015:986574. doi: 10.1155/2015/986574. Epub 2015 Apr 7.

Abstract

Circular convolution and random permutation have each been proposed as neurally plausible binding operators capable of encoding sequential information in semantic memory. We perform several controlled comparisons of circular convolution and random permutation as means of encoding paired associates as well as encoding sequential information. Random permutations outperformed convolution with respect to the number of paired associates that can be reliably stored in a single memory trace. Performance was equal on semantic tasks when using a small corpus, but random permutations were ultimately capable of achieving superior performance due to their higher scalability to large corpora. Finally, "noisy" permutations in which units are mapped to other units arbitrarily (no one-to-one mapping) perform nearly as well as true permutations. These findings increase the neurological plausibility of random permutations and highlight their utility in vector space models of semantics.

摘要

循环卷积和随机排列都被提出作为在神经学上合理的绑定算子,能够在语义记忆中编码序列信息。我们对循环卷积和随机排列进行了几次对照比较,以此作为编码配对联想以及编码序列信息的手段。就能够可靠存储在单个记忆痕迹中的配对联想数量而言,随机排列的表现优于卷积。在使用小语料库时,语义任务的表现相当,但由于随机排列对大语料库具有更高的可扩展性,最终能够实现更优的表现。最后,单元被任意映射到其他单元(无一对一映射)的“噪声”排列的表现几乎与真正的排列一样好。这些发现增加了随机排列在神经学上的合理性,并突出了它们在语义向量空间模型中的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ec/4405220/4d55f91802dd/CIN2015-986574.001.jpg

相似文献

1
Encoding sequential information in semantic space models: comparing holographic reduced representation and random permutation.
Comput Intell Neurosci. 2015;2015:986574. doi: 10.1155/2015/986574. Epub 2015 Apr 7.
4
Towards a semantic lexicon for clinical natural language processing.
AMIA Annu Symp Proc. 2012;2012:568-76. Epub 2012 Nov 3.
5
Enhancing text categorization with semantic-enriched representation and training data augmentation.
J Am Med Inform Assoc. 2006 Sep-Oct;13(5):526-35. doi: 10.1197/jamia.M2051. Epub 2006 Jun 23.
6
Text categorization of biomedical data sets using graph kernels and a controlled vocabulary.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Sep-Oct;10(5):1211-7. doi: 10.1109/TCBB.2013.16.
7
Semantic annotation for concept-based cross-language medical information retrieval.
Int J Med Inform. 2002 Dec 4;67(1-3):97-112. doi: 10.1016/s1386-5056(02)00058-8.
8
A comparison of word embeddings for the biomedical natural language processing.
J Biomed Inform. 2018 Nov;87:12-20. doi: 10.1016/j.jbi.2018.09.008. Epub 2018 Sep 12.
9
Frame semantics-based study of verbs across medical genres.
Stud Health Technol Inform. 2014;205:1075-9.
10
Learning contextualized semantics from co-occurring terms via a Siamese architecture.
Neural Netw. 2016 Apr;76:65-96. doi: 10.1016/j.neunet.2016.01.004. Epub 2016 Jan 22.

引用本文的文献

2
Vector Symbolic Architectures as a Computing Framework for Emerging Hardware.
Proc IEEE Inst Electr Electron Eng. 2022 Oct;110(10):1538-1571. Epub 2022 Oct 17.
3
Using big data to understand bilingual performance in semantic fluency: Findings from the Canadian Longitudinal Study on Aging.
PLoS One. 2022 Nov 28;17(11):e0277660. doi: 10.1371/journal.pone.0277660. eCollection 2022.
4
Near-channel classifier: symbiotic communication and classification in high-dimensional space.
Brain Inform. 2021 Aug 17;8(1):16. doi: 10.1186/s40708-021-00138-0.
5
Mining a Crowdsourced Dictionary to Understand Consistency and Preference in Word Meanings.
Front Psychol. 2019 Feb 18;10:268. doi: 10.3389/fpsyg.2019.00268. eCollection 2019.
6
A Large-Scale Semantic Analysis of Verbal Fluency Across the Aging Spectrum: Data From the Canadian Longitudinal Study on Aging.
J Gerontol B Psychol Sci Soc Sci. 2020 Oct 16;75(9):e221-e230. doi: 10.1093/geronb/gbz003.
7
Using experiential optimization to build lexical representations.
Psychon Bull Rev. 2019 Feb;26(1):103-126. doi: 10.3758/s13423-018-1501-2.
8
Controlling Individuals Growth in Semantic Genetic Programming through Elitist Replacement.
Comput Intell Neurosci. 2016;2016:8326760. doi: 10.1155/2016/8326760. Epub 2015 Dec 27.

本文引用的文献

2
The construction of meaning.
Top Cogn Sci. 2011 Apr;3(2):346-70. doi: 10.1111/j.1756-8765.2010.01107.x. Epub 2010 Aug 18.
3
Redundancy in perceptual and linguistic experience: comparing feature-based and distributional models of semantic representation.
Top Cogn Sci. 2011 Apr;3(2):303-45. doi: 10.1111/j.1756-8765.2010.01111.x. Epub 2010 Aug 19.
4
Symbol interdependency in symbolic and embodied cognition.
Top Cogn Sci. 2011 Apr;3(2):273-302. doi: 10.1111/j.1756-8765.2010.01106.x. Epub 2010 Aug 18.
5
A neural model of rule generation in inductive reasoning.
Top Cogn Sci. 2011 Jan;3(1):140-53. doi: 10.1111/j.1756-8765.2010.01127.x.
6
The hidden Markov Topic model: a probabilistic model of semantic representation.
Top Cogn Sci. 2010 Jan;2(1):101-13. doi: 10.1111/j.1756-8765.2009.01074.x.
7
A large-scale model of the functioning brain.
Science. 2012 Nov 30;338(6111):1202-5. doi: 10.1126/science.1225266.
8
A memory-based theory of verbal cognition.
Cogn Sci. 2005 Mar 4;29(2):145-93. doi: 10.1207/s15516709cog0000_9.
9
Toward a scalable holographic word-form representation.
Behav Res Methods. 2011 Sep;43(3):602-15. doi: 10.3758/s13428-011-0125-5.
10
Lexical categories at the edge of the word.
Cogn Sci. 2008 Jan 2;32(1):184-221. doi: 10.1080/03640210701703691.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验