Lee Jun Mo, Nouri-Mahdavi Kouros, Morales Esteban, Afifi Abdelmonem, Yu Fei, Caprioli Joseph
Glaucoma Division, Siloam Eye Hospital, Seoul, South Korea,
Jpn J Ophthalmol. 2014 Nov;58(6):504-14. doi: 10.1007/s10384-014-0341-5. Epub 2014 Aug 28.
Our aim was to compare fit and predictive performance effectiveness of four pointwise regression models in measuring the visual field (VF) decay rate of progression in patients with open-angle glaucoma.
We selected Humphrey VF data of patients with open-angle glaucoma with a minimum follow-up time of 6 years. For each eye (n = 798 from 588 patients), we regressed threshold sensitivity (y) at each VF test location for the entire VF series against follow-up time (x), with four candidate first-order regression models: (1) ordinary least-squares linear regression model (y = β 0 + β 1 x); (2) nondecay exponential regression model (y = β 0 + β 1e (x) ); (3) decay exponential regression model ([Formula: see text]); (4) Tobit-censored, maximum-likelihood linear regression model (y* = [Formula: see text], ε ~ N(0, σ(2))), where x is follow-up time and y is threshold sensitivity.
The average [± standard deviation (SD)] baseline VF mean deviation (MD) was -8.2 (±5.5) dB, the mean follow-up was 8.7 (±1.9) years, and the number of follow-up VFs was 14.7 (±4.4). The decay exponential model was the best-fitting (42.7 % of locations) and best-forecasting (65.5 % of locations) model. The decay exponential model was the best prediction model in all categories of severity.
It is not clear that the ordinary least-squares linear regression model is always the favored model for fitting and forecasting VF data in patients with glaucoma. The pointwise decay exponential regression (PER) model was the best-fitting and best-predicting model across a wide range of glaucoma severity and can be readily understood by clinicians.
我们的目的是比较四种逐点回归模型在测量开角型青光眼患者视野(VF)进展衰退率方面的拟合度和预测性能有效性。
我们选取了随访时间至少为6年的开角型青光眼患者的汉弗莱视野数据。对于每只眼睛(来自588名患者,共798只眼),我们使用四个候选一阶回归模型,将整个视野系列中每个视野测试位置的阈值敏感度(y)与随访时间(x)进行回归分析:(1)普通最小二乘线性回归模型(y =β0 +β1x);(2)非衰退指数回归模型(y =β0 +β1e(x));(3)衰退指数回归模型([公式:见正文]);(4)托比特删失最大似然线性回归模型(y* = [公式:见正文],ε~N(0,σ(2))),其中x为随访时间,y为阈值敏感度。
平均[±标准差(SD)]基线视野平均偏差(MD)为-8.2(±5.5)dB,平均随访时间为8.7(±1.9)年,随访视野次数为14.7(±4.4)次。衰退指数模型是拟合度最佳(42.7%的位置)和预测性最佳(65.5%的位置)的模型。在所有严重程度类别中,衰退指数模型都是最佳预测模型。
普通最小二乘线性回归模型是否总是青光眼患者视野数据拟合和预测的首选模型尚不清楚。逐点衰退指数回归(PER)模型在广泛的青光眼严重程度范围内是拟合度最佳和预测性最佳的模型,并且临床医生很容易理解。