From the Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
the Department of Energy Great Lakes Bioenergy Research Center and Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706.
J Biol Chem. 2014 Nov 7;289(45):31624-37. doi: 10.1074/jbc.M114.587766. Epub 2014 Aug 27.
Cellulase mixtures from Hypocrea jecorina are commonly used for the saccharification of cellulose in biotechnical applications. The most abundant β-glucosidase in the mesophilic fungus Hypocrea jecorina is HjCel3A, which hydrolyzes the β-linkage between two adjacent molecules in dimers and short oligomers of glucose. It has been shown that enhanced levels of HjCel3A in H. jecorina cellulase mixtures benefit the conversion of cellulose to glucose. Biochemical characterization of HjCel3A shows that the enzyme efficiently hydrolyzes (1,4)- as well as (1,2)-, (1,3)-, and (1,6)-β-D-linked disaccharides. For crystallization studies, HjCel3A was produced in both H. jecorina (HjCel3A) and Pichia pastoris (Pp-HjCel3A). Whereas the thermostabilities of HjCel3A and Pp-HjCel3A are the same, Pp-HjCel3A has a higher degree of N-linked glycosylation. Here, we present x-ray structures of HjCel3A with and without glucose bound in the active site. The structures have a three-domain architecture as observed previously for other glycoside hydrolase family 3 β-glucosidases. Both production hosts resulted in HjCel3A structures that have N-linked glycosylations at Asn(208) and Asn(310). In H. jecorina-produced HjCel3A, a single N-acetylglucosamine is present at both sites, whereas in Pp-HjCel3A, the P. pastoris-produced HjCel3A enzyme, the glycan chains consist of 8 or 4 saccharides. The glycosylations are involved in intermolecular contacts in the structures derived from either host. Due to the different sizes of the glycosylations, the interactions result in different crystal forms for the two protein forms.
里氏木霉来源的纤维素酶混合物常用于生物技术应用中纤维素的糖化。中温真菌里氏木霉中最丰富的β-葡萄糖苷酶是 HjCel3A,它水解二聚体和短寡糖中相邻两个分子之间的β-糖苷键。已经表明,里氏木霉纤维素酶混合物中 HjCel3A 水平的提高有利于纤维素转化为葡萄糖。HjCel3A 的生化特性表明,该酶能有效地水解(1,4)-以及(1,2)-、(1,3)-和(1,6)-β-D 连接的二糖。为了进行结晶研究,在里氏木霉(HjCel3A)和巴斯德毕赤酵母(Pp-HjCel3A)中均生产 HjCel3A。尽管 HjCel3A 和 Pp-HjCel3A 的热稳定性相同,但 Pp-HjCel3A 的 N-连接糖基化程度更高。在这里,我们展示了结合和未结合葡萄糖的 HjCel3A 的 x 射线结构在活性位点。这些结构具有与先前观察到的其他糖苷水解酶家族 3 β-葡萄糖苷酶相同的三结构域架构。两种生产宿主都导致 HjCel3A 结构在 Asn(208)和 Asn(310)处具有 N-连接糖基化。在里氏木霉生产的 HjCel3A 中,两个位点都存在单个 N-乙酰葡萄糖胺,而在 Pp-HjCel3A 中,毕赤酵母生产的 HjCel3A 酶的糖链由 8 或 4 个糖组成。糖基化参与了来自任一宿主的结构中的分子间相互作用。由于糖基化的大小不同,相互作用导致两种蛋白质形式的晶体形式不同。