Suppr超能文献

多结构域推测性β-1,4-葡糖苷酶家族 3 糖苷水解酶(PsGH3)的结构与动力学分析来自盐单胞菌。

Structure and dynamics analysis of multi-domain putative β-1,4-glucosidase of family 3 glycoside hydrolase (PsGH3) from Pseudopedobacter saltans.

机构信息

Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.

出版信息

J Mol Model. 2021 Mar 10;27(4):106. doi: 10.1007/s00894-021-04721-4.

Abstract

Structure and conformational behaviour of a putative β-1,4-glucosidase of glycoside hydrolase family 3 (PsGH3) from Pseudopedobacter saltans was predicted by using in-silico tools. PsGH3 modeled structure constructed using Phyre2 displayed multidomain architecture comprising an N-terminal (β/α)-fold domain followed by (α/β)-sandwich domain, PA14 domain, and a C-terminal domain resembling an immunoglobulin fold. Ramachandran plot displayed 99.3% of amino acids in the allowed region and 0.7% residues in the disallowed region. Multiple sequence alignment (MSA) and structure superposition of PsGH3 with other homologues from GH3 family revealed the conserved residues, Asp274 and Glu624 present in loops LA and LB, respectively originating from N-terminal domain act as catalytic residues. The volume and area calculated for PsGH3 displayed a deep active-site conformation comparable with its homologues, β-1,4-glucosidases (GH3) of Kluyveromyces marxianus and Streptomyces venezuelae. Molecular dynamic (MD) simulation of PsGH3 structure for 80 ns suggested stable and compact structure. Molecular docking studies revealed deeper active site conformation of PsGH3 that could house larger cellooligosaccharides up to 7° of polymerization (DP7). The amino acid residues, Ala86, Leu88, Cys275, Pro483, Phe493, Asn417, Asn491, Pro492, and Leu495 created a binding pocket near the catalytic cleft, crucial for ligand binding. MD simulation of PsGH3 in the presence of cellooligosaccharides, viz., cellobiose and celloheptaose showed stability in terms of RMSD, R, and SASA values till 80 ns. The calculation of average number of hydrogen bond (H-bond), interaction energy, and binding free energy confirmed the stronger binding affinity of the larger cellooligosaccharides such as celloheptaose in the binding cavity of PsGH3.

摘要

通过使用计算机模拟工具,预测了嗜盐假单胞菌糖基水解酶家族 3(PsGH3)中假定的β-1,4-葡糖苷酶的结构和构象行为。使用 Phyre2 构建的 PsGH3 模型结构显示了具有多个结构域的架构,包括一个 N 端(β/α)折叠结构域,随后是(α/β)-夹层结构域、PA14 结构域和类似于免疫球蛋白折叠的 C 端结构域。Ramachandran 图显示 99.3%的氨基酸位于允许区域,0.7%的氨基酸位于不允许区域。PsGH3 与 GH3 家族其他同源物的多重序列比对(MSA)和结构叠加显示,分别来自 N 端结构域的保守残基 Asp274 和 Glu624 作为催化残基存在于环 LA 和 LB 中。计算得出的 PsGH3 的体积和面积显示出一个深的活性部位构象,与它的同源物,马克斯克鲁维酵母和委内瑞拉链霉菌的β-1,4-葡糖苷酶(GH3)相当。对 PsGH3 结构进行 80 ns 的分子动力学(MD)模拟表明,其结构稳定且紧凑。分子对接研究表明,PsGH3 具有更深的活性部位构象,能够容纳多达 7°聚合度(DP7)的更大的纤维寡糖。Ala86、Leu88、Cys275、Pro483、Phe493、Asn417、Asn491、Pro492 和 Leu495 等氨基酸残基在催化裂缝附近形成一个结合口袋,对配体结合至关重要。在纤维寡糖(如纤维二糖和纤维七糖)存在的情况下对 PsGH3 进行 MD 模拟表明,在 80 ns 内,其 RMSD、R 和 SASA 值都保持稳定。平均氢键(H-bond)数、相互作用能和结合自由能的计算证实了较大的纤维寡糖(如纤维七糖)在 PsGH3 结合腔内具有更强的结合亲和力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b03/7945971/3ee3c21327e1/894_2021_4721_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验