Suppr超能文献

硫化氢可缓解链脲佐菌素诱导的糖尿病大鼠模型中的糖尿病肾病。

Hydrogen sulfide alleviates diabetic nephropathy in a streptozotocin-induced diabetic rat model.

作者信息

Zhou Xiang, Feng Yu, Zhan Zhoubing, Chen Jianchang

机构信息

From the Departments of Cardiology,

Endocrinology, and.

出版信息

J Biol Chem. 2014 Oct 17;289(42):28827-34. doi: 10.1074/jbc.M114.596593. Epub 2014 Aug 27.

Abstract

Accumulating evidence has demonstrated that hydrogen sulfide (H2S) plays critical roles in the pathogenesis of chronic kidney diseases. This study was designed to investigate whether H2S has protective effects against diabetic nephropathy. Diabetic rats were induced by intraperitoneal injection of streptozotocin and administrated with H2S donor NaHS for 12 weeks. Rat glomerular mesangial cells were pretreated with NaHS or MAPK inhibitors (U0126, SP600125, and SB203580) prior to high glucose exposure, and cell proliferation was determined. Our findings suggest that H2S can improve renal function and attenuate glomerular basement membrane thickening, mesangial matrix deposition, and renal interstitial fibrosis in diabetic rats. H2S was found to reduce high glucose-induced oxidative stress by activating the Nrf2 antioxidant pathway and to exert anti-inflammatory effects by inhibiting NF-κB signaling. In addition, H2S reduced high glucose-induced mesangial cell proliferation by blockade of MAPK signaling pathways. Moreover, H2S was also found to inhibit the renin-angiotensin system in diabetic kidney. In conclusion, our study demonstrates that H2S alleviates the development of diabetic nephropathy by attenuating oxidative stress and inflammation, reducing mesangial cell proliferation, and inhibiting renin-angiotensin system activity.

摘要

越来越多的证据表明,硫化氢(H2S)在慢性肾脏病的发病机制中起关键作用。本研究旨在探讨H2S是否对糖尿病肾病具有保护作用。通过腹腔注射链脲佐菌素诱导糖尿病大鼠,并给予H2S供体硫氢化钠(NaHS)12周。在高糖暴露前,用NaHS或丝裂原活化蛋白激酶(MAPK)抑制剂(U0126、SP600125和SB203580)预处理大鼠肾小球系膜细胞,并测定细胞增殖情况。我们的研究结果表明,H2S可以改善糖尿病大鼠的肾功能,减轻肾小球基底膜增厚、系膜基质沉积和肾间质纤维化。研究发现,H2S通过激活Nrf2抗氧化途径减轻高糖诱导的氧化应激,并通过抑制NF-κB信号传导发挥抗炎作用。此外,H2S通过阻断MAPK信号通路减少高糖诱导的系膜细胞增殖。此外,还发现H2S抑制糖尿病肾脏中的肾素-血管紧张素系统。总之,我们的研究表明,H2S通过减轻氧化应激和炎症、减少系膜细胞增殖以及抑制肾素-血管紧张素系统活性来缓解糖尿病肾病的发展。

相似文献

1
Hydrogen sulfide alleviates diabetic nephropathy in a streptozotocin-induced diabetic rat model.
J Biol Chem. 2014 Oct 17;289(42):28827-34. doi: 10.1074/jbc.M114.596593. Epub 2014 Aug 27.
5
The DR1‑CSE/HS system inhibits renal fibrosis by downregulating the ERK1/2 signaling pathway in diabetic mice.
Int J Mol Med. 2022 Jan;49(1). doi: 10.3892/ijmm.2021.5062. Epub 2021 Nov 15.
6
HS improves renal fibrosis in STZ-induced diabetic rats by ameliorating TGF-β1 expression.
Ren Fail. 2017 Nov;39(1):265-272. doi: 10.1080/0886022X.2016.1257433. Epub 2016 Nov 24.
7
Rescue of mesangial cells from high glucose-induced over-proliferation and extracellular matrix secretion by hydrogen sulfide.
Nephrol Dial Transplant. 2011 Jul;26(7):2119-26. doi: 10.1093/ndt/gfq749. Epub 2011 Jan 5.
8
WJ-39, an Aldose Reductase Inhibitor, Ameliorates Renal Lesions in Diabetic Nephropathy by Activating Nrf2 Signaling.
Oxid Med Cell Longev. 2020 May 30;2020:7950457. doi: 10.1155/2020/7950457. eCollection 2020.
9
Effects of combinations of Xiexin decoction constituents on diabetic nephropathy in rats.
J Ethnopharmacol. 2014 Nov 18;157:126-33. doi: 10.1016/j.jep.2014.09.024. Epub 2014 Sep 30.
10
Carnosic acid improves diabetic nephropathy by activating Nrf2/ARE and inhibition of NF-κB pathway.
Phytomedicine. 2018 Aug 1;47:161-173. doi: 10.1016/j.phymed.2018.04.031. Epub 2018 Apr 17.

引用本文的文献

2
Pathophysiology and management of crush syndrome: A narrative review.
World J Orthop. 2025 Apr 18;16(4):104489. doi: 10.5312/wjo.v16.i4.104489.
3
The CLCA1/TMEM16A/Cl- current axis associates with H2S deficiency in diabetic kidney injury.
JCI Insight. 2025 Jan 9;10(1):e174848. doi: 10.1172/jci.insight.174848.
5
Advances of Iron and Ferroptosis in Diabetic Kidney Disease.
Kidney Int Rep. 2024 Apr 3;9(7):1972-1985. doi: 10.1016/j.ekir.2024.04.012. eCollection 2024 Jul.
6
Evaluation of Effect of Montelukast in the Model of Streptozotocin Induced Diabetic Nephropathy in Rats.
Indian J Endocrinol Metab. 2024 Jan-Feb;28(1):47-54. doi: 10.4103/ijem.ijem_414_22. Epub 2024 Feb 26.
7
Huaju Xiaoji Formula Regulates ERS-lncMGC/miRNA to Enhance the Renal Function of Hypertensive Diabetic Mice with Nephropathy.
J Diabetes Res. 2024 Jan 20;2024:6942156. doi: 10.1155/2024/6942156. eCollection 2024.
8
The roles of gut microbiota and its metabolites in diabetic nephropathy.
Front Microbiol. 2023 Jul 27;14:1207132. doi: 10.3389/fmicb.2023.1207132. eCollection 2023.
9
Diabetic Nephropathy and Gaseous Modulators.
Antioxidants (Basel). 2023 May 12;12(5):1088. doi: 10.3390/antiox12051088.
10
Modeling SILAC Data to Assess Protein Turnover in a Cellular Model of Diabetic Nephropathy.
Int J Mol Sci. 2023 Feb 1;24(3):2811. doi: 10.3390/ijms24032811.

本文引用的文献

1
Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy.
Kidney Int. 2014 Jun;85(6):1318-29. doi: 10.1038/ki.2013.449. Epub 2013 Nov 27.
2
Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy.
Biochem Biophys Res Commun. 2013 Apr 19;433(4):359-61. doi: 10.1016/j.bbrc.2013.02.120. Epub 2013 Mar 26.
3
Molecular basis of NF-κB signaling.
Annu Rev Biophys. 2013;42:443-68. doi: 10.1146/annurev-biophys-083012-130338. Epub 2013 Mar 11.
4
Toxico-pharmacological perspective of the Nrf2-Keap1 defense system against oxidative stress in kidney diseases.
Biochem Pharmacol. 2013 Apr 1;85(7):865-72. doi: 10.1016/j.bcp.2013.01.006. Epub 2013 Jan 17.
5
Inflammation and the pathogenesis of diabetic nephropathy.
Clin Sci (Lond). 2013 Feb;124(3):139-52. doi: 10.1042/CS20120198.
6
Inflammation in diabetic nephropathy.
Mediators Inflamm. 2012;2012:146154. doi: 10.1155/2012/146154. Epub 2012 Aug 21.
7
Downregulation of the renal and hepatic hydrogen sulfide (H2S)-producing enzymes and capacity in chronic kidney disease.
Nephrol Dial Transplant. 2012 Feb;27(2):498-504. doi: 10.1093/ndt/gfr560. Epub 2011 Oct 29.
8
Oxidative stress and diabetic kidney disease.
Curr Diab Rep. 2011 Aug;11(4):330-6. doi: 10.1007/s11892-011-0196-9.
9
Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy.
Nat Rev Nephrol. 2011 Jun;7(6):327-40. doi: 10.1038/nrneph.2011.51. Epub 2011 May 3.
10
A glimpse of various pathogenetic mechanisms of diabetic nephropathy.
Annu Rev Pathol. 2011;6:395-423. doi: 10.1146/annurev.pathol.4.110807.092150.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验