Suppr超能文献

相似文献

1
Modeling Physiological Data with Deep Belief Networks.
Int J Inf Educ Technol. 2013;3(5):505-511. doi: 10.7763/IJIET.2013.V3.326.
2
Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks.
Front Neurosci. 2017 Mar 7;11:103. doi: 10.3389/fnins.2017.00103. eCollection 2017.
3
A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
Comput Methods Programs Biomed. 2017 Mar;140:283-293. doi: 10.1016/j.cmpb.2016.12.019. Epub 2017 Jan 6.
4
Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement.
J Neural Eng. 2011 Jun;8(3):036015. doi: 10.1088/1741-2560/8/3/036015. Epub 2011 Apr 28.
5
Automated depression analysis using convolutional neural networks from speech.
J Biomed Inform. 2018 Jul;83:103-111. doi: 10.1016/j.jbi.2018.05.007. Epub 2018 May 29.
6
Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network.
Sensors (Basel). 2017 Jul 4;17(7):1564. doi: 10.3390/s17071564.
7
Stress detection using deep neural networks.
BMC Med Inform Decis Mak. 2020 Dec 30;20(Suppl 11):285. doi: 10.1186/s12911-020-01299-4.
8
Recognition of emotions using multimodal physiological signals and an ensemble deep learning model.
Comput Methods Programs Biomed. 2017 Mar;140:93-110. doi: 10.1016/j.cmpb.2016.12.005. Epub 2016 Dec 15.
9
[Terahertz Spectroscopic Identification with Deep Belief Network].
Guang Pu Xue Yu Guang Pu Fen Xi. 2015 Dec;35(12):3325-9.
10
Deep Personality Trait Recognition: A Survey.
Front Psychol. 2022 May 6;13:839619. doi: 10.3389/fpsyg.2022.839619. eCollection 2022.

引用本文的文献

1
Attention-based 3D convolutional recurrent neural network model for multimodal emotion recognition.
Front Neurosci. 2024 Jan 10;17:1330077. doi: 10.3389/fnins.2023.1330077. eCollection 2023.
2
An ECG Stitching Scheme for Driver Arrhythmia Classification Based on Deep Learning.
Sensors (Basel). 2023 Mar 20;23(6):3257. doi: 10.3390/s23063257.
3
An improved multi-input deep convolutional neural network for automatic emotion recognition.
Front Neurosci. 2022 Oct 4;16:965871. doi: 10.3389/fnins.2022.965871. eCollection 2022.
5
Emotion Recognition Based on Dynamic Energy Features Using a Bi-LSTM Network.
Front Comput Neurosci. 2022 Feb 21;15:741086. doi: 10.3389/fncom.2021.741086. eCollection 2021.
6
Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery.
Mol Divers. 2021 Aug;25(3):1439-1460. doi: 10.1007/s11030-021-10256-w. Epub 2021 Jun 23.
8
Emotion Recognition from Multiband EEG Signals Using CapsNet.
Sensors (Basel). 2019 May 13;19(9):2212. doi: 10.3390/s19092212.
9
Recognition of Emotions Using Multichannel EEG Data and DBN-GC-Based Ensemble Deep Learning Framework.
Comput Intell Neurosci. 2018 Dec 13;2018:9750904. doi: 10.1155/2018/9750904. eCollection 2018.
10
Arousal and Valence Classification Model Based on Long Short-Term Memory and DEAP Data for Mental Healthcare Management.
Healthc Inform Res. 2018 Oct;24(4):309-316. doi: 10.4258/hir.2018.24.4.309. Epub 2018 Oct 31.

本文引用的文献

2
Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement.
J Neural Eng. 2011 Jun;8(3):036015. doi: 10.1088/1741-2560/8/3/036015. Epub 2011 Apr 28.
3
Autonomic nervous system activity in emotion: a review.
Biol Psychol. 2010 Jul;84(3):394-421. doi: 10.1016/j.biopsycho.2010.03.010. Epub 2010 Apr 4.
4
Emotion recognition based on physiological changes in music listening.
IEEE Trans Pattern Anal Mach Intell. 2008 Dec;30(12):2067-83. doi: 10.1109/TPAMI.2008.26.
5
Reducing the dimensionality of data with neural networks.
Science. 2006 Jul 28;313(5786):504-7. doi: 10.1126/science.1127647.
6
Basic emotions are associated with distinct patterns of cardiorespiratory activity.
Int J Psychophysiol. 2006 Jul;61(1):5-18. doi: 10.1016/j.ijpsycho.2005.10.024. Epub 2006 Jan 24.
7
A systems approach to appraisal mechanisms in emotion.
Neural Netw. 2005 May;18(4):317-52. doi: 10.1016/j.neunet.2005.03.001.
8
Training products of experts by minimizing contrastive divergence.
Neural Comput. 2002 Aug;14(8):1771-800. doi: 10.1162/089976602760128018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验