Suppr超能文献

使用稀疏深度信念网络改进基于脑电图的驾驶员疲劳分类

Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks.

作者信息

Chai Rifai, Ling Sai Ho, San Phyo Phyo, Naik Ganesh R, Nguyen Tuan N, Tran Yvonne, Craig Ashley, Nguyen Hung T

机构信息

Faculty of Engineering and Information Technology, Centre for Health Technologies, University of Technology Sydney, NSW, Australia.

Data Analytic Department, Institute for Infocomm Research ASTAR, Singapore, Singapore.

出版信息

Front Neurosci. 2017 Mar 7;11:103. doi: 10.3389/fnins.2017.00103. eCollection 2017.

Abstract

This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively.

摘要

本文通过收集43名参与者的数据,对基于脑电图(EEG)的驾驶员疲劳与清醒状态分类性能进行了改进。该系统采用自回归(AR)建模作为特征提取算法,稀疏深度信念网络(sparse-DBN)作为分类算法。与其他分类器相比,稀疏深度信念网络是一种半监督学习方法,它在前训练层将无监督学习用于特征建模,在后续层将监督学习用于分类。稀疏深度信念网络中的稀疏性是通过一个正则化项实现的,该项惩罚隐藏单元预期激活与固定低水平的偏差,防止网络过度拟合,并能够学习低级结构和高级结构。为作比较,使用了人工神经网络(ANN)、贝叶斯神经网络(BNN)和原始深度信念网络(DBN)分类器。分类结果表明,使用AR特征提取器和DBN分类器时,与人工神经网络(敏感性为80.8%,特异性为77.8%,准确率为79.3%,曲线下面积(AUROC)为0.83)和贝叶斯神经网络分类器(敏感性为84.3%,特异性为83%,准确率为83.6%,AUROC为0.87)相比,分类性能有所提高,敏感性为90.8%,特异性为90.4%,准确率为90.6%,AUROC为0.94。使用稀疏深度信念网络分类器时,分类性能进一步提高,敏感性为93.9%,特异性为92.3%,准确率为93.1%,AUROC为0.96。总体而言,稀疏深度信念网络分类器分别比人工神经网络、贝叶斯神经网络和深度信念网络分类器的准确率提高了13.8%、9.5%和2.5%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a531/5339284/4db0e4d4aded/fnins-11-00103-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验