Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany.
Departamento de Química Física, Universidad del País Vasco UPV/EHU, E-48080 Bilbao, Spain IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain.
Phys Rev Lett. 2013 Sep 6;111(10):100503. doi: 10.1103/PhysRevLett.111.100503. Epub 2013 Sep 4.
Among all entanglement measures negativity arguably is the best known and most popular tool to quantify bipartite quantum correlations. It is easily computed for arbitrary states of a composite system and can therefore be applied to discuss entanglement in an ample variety of situations. However, as opposed to logarithmic negativity, its direct physical meaning has not been pointed out yet. We show that the negativity can be viewed as an estimator of how many degrees of freedom of two subsystems are entangled. As it is possible to give lower bounds for the negativity even in a device-independent setting, it is the appropriate quantity to certify quantumness of both parties in a bipartite system and to determine the minimum number of dimensions that contribute to the quantum correlations.
在所有纠缠度量中,负熵可以说是最著名和最流行的工具,可用于量化双量子系统的相关性。它可以很容易地计算出复合系统的任意状态,因此可以应用于讨论各种情况下的纠缠。然而,与对数负熵不同,它的直接物理意义尚未被指出。我们表明,负熵可以看作是两个子系统的自由度纠缠程度的估计量。由于即使在设备独立的情况下也可以给出负熵的下界,因此它是证明双量子系统中双方的量子特性以及确定对量子相关性有贡献的最小维度数的适当数量。