Gangalum Rajendra K, Jing Zhe, Bhat Ankur M, Lee Josh, Nagaoka Yoshiko, Deng Sophie X, Jiang Meisheng, Bhat Suraj P
Jules Stein Eye Institute, Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States.
Jules Stein Eye Institute, Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States Department of Molecular and Medical Pharmacology, Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States Molecular Biology Institute and Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States.
Invest Ophthalmol Vis Sci. 2014 Aug 28;55(11):7227-40. doi: 10.1167/iovs.14-14594.
The clinical management of cataracts in infancy involves surgical removal of the lens to ensure transmission of light to the retina, which is essential for normal neural development of the infant. This surgery, however, entails a lifelong follow-up and impaired vision. To our knowledge, no animal models recapitulate human lamellar opacities, the most prevalent form of early childhood cataracts. We present data on the recreation of the human lamellar cataract phenotype in transgenic mice.
Mutations in the DNA binding domain (DBD) of the heat shock transcription factor 4 (HSF4) are known to be associated with early childhood autosomal dominant lamellar cataract. We used bacterial artificial chromosome (BAC) transgenesis to express a hybrid gene: Hsf4 (DBD)-enhanced green fluorescent protein (EGFP), by recombineering EGFP sequences into the DBD of the Hsf4 gene, to interfere with the DNA binding properties of Hsf4.
We recapitulated the human lamellar cataract, in its temporal as well as spatial presentation, within the transgenic mouse lens. This phenotype was reproduced faithfully using four different BACs, indicating that EGFP can be used to target transcription factor function in transgenic mice. Molecular and cell biological examination of early postnatal transgenic lens reveals impairment of secondary fiber cell differentiation.
Recreation of the human lamellar cataract phenotype in mice allows investigation of this human pathology at a level not possible previously and points to the relevance of fiber cell heterogeneity dictated by fiber cell-specific gene activity in the biogenesis of the lamellar cataract.
婴儿白内障的临床管理包括手术摘除晶状体,以确保光线传输至视网膜,这对婴儿的正常神经发育至关重要。然而,这种手术需要终身随访且会导致视力受损。据我们所知,尚无动物模型能够重现人类板层混浊,这是幼儿白内障最常见的形式。我们展示了在转基因小鼠中重现人类板层白内障表型的数据。
已知热休克转录因子4(HSF4)的DNA结合结构域(DBD)中的突变与幼儿常染色体显性板层白内障相关。我们使用细菌人工染色体(BAC)转基因技术来表达一种杂交基因:Hsf4(DBD)-增强型绿色荧光蛋白(EGFP),通过重组工程将EGFP序列导入Hsf4基因的DBD中,以干扰Hsf4的DNA结合特性。
我们在转基因小鼠晶状体中重现了人类板层白内障的时间和空间表现。使用四种不同的BAC忠实地再现了这种表型,表明EGFP可用于在转基因小鼠中靶向转录因子功能。对出生后早期转基因晶状体的分子和细胞生物学检查显示次级纤维细胞分化受损。
在小鼠中重现人类板层白内障表型使得能够在以前不可能达到的水平上研究这种人类病理学,并指出纤维细胞特异性基因活性所决定的纤维细胞异质性在板层白内障生物发生中的相关性。