Bestmann Sven, Ruge Diane, Rothwell John, Galea Joseph M
University College London.
J Cogn Neurosci. 2015 Feb;27(2):365-76. doi: 10.1162/jocn_a_00706.
Humans carry out many daily tasks in a seemingly automatic fashion. However, when unexpected changes in the environment occur, we have the capacity to inhibit prepotent behavior and replace it with an alternative one. Such behavioral flexibility is a hallmark of executive functions. The neurotransmitter dopamine is known to be crucial for fast, efficient, and accurate cognitive flexibility. Despite the perceived similarities between cognitive and motor flexibility, less is known regarding the role of dopamine within the motor domain. Therefore, the aim of this study was to determine the role of dopamine in motor flexibility. In a double-blind, five-session, within-subject pharmacological experiment, human participants performed an RT task within a probabilistic context that was either predictable or unpredictable. The probabilistic nature of the predictable context resulted in prediction errors. This required participants to replace the prepotent or prepared action with an unprepared action (motor flexibility). The task was overlearned, and changes in context were explicitly instructed, thus controlling for contributions from other dopamine-related processes such as probabilistic or reversal learning and interactions with other types of uncertainty. We found that dopamine receptor blockade by high-dose haloperidol (D1/D2 dopamine receptors) impaired participants' ability to react to unexpected events occurring in a predictable context, which elicit large prediction errors and necessitate motor flexibility. This effect was not observed with selective D2 receptor blockade (sulpiride), with a general increase in tonic dopamine levels (levodopa), or during an unpredictable context, which evoked minimal prediction error. We propose that dopamine is vital in responding to low-level prediction errors about stimulus outcome that requires motor flexibility.
人类以看似自动的方式执行许多日常任务。然而,当环境发生意外变化时,我们有能力抑制优势行为并用另一种行为取而代之。这种行为灵活性是执行功能的一个标志。已知神经递质多巴胺对于快速、高效和准确的认知灵活性至关重要。尽管认知灵活性和运动灵活性之间存在明显的相似之处,但关于多巴胺在运动领域中的作用却知之甚少。因此,本研究的目的是确定多巴胺在运动灵活性中的作用。在一项双盲、五阶段、受试者内药理学实验中,人类参与者在一个概率性情境中执行反应时任务,该情境要么是可预测的,要么是不可预测的。可预测情境的概率性质会导致预测误差。这要求参与者用未准备好的动作(运动灵活性)取代优势或已准备好的动作。该任务是过度学习的,并且明确指示了情境的变化,从而控制了其他与多巴胺相关的过程(如概率或逆向学习)以及与其他类型不确定性的相互作用所产生的影响。我们发现,高剂量氟哌啶醇(D1/D2多巴胺受体)阻断多巴胺受体损害了参与者对可预测情境中发生的意外事件做出反应的能力,这些意外事件会引发较大的预测误差并需要运动灵活性。在选择性D2受体阻断(舒必利)、多巴胺基础水平普遍升高(左旋多巴)的情况下,或者在不可预测的情境中(这种情境引发的预测误差最小),均未观察到这种效应。我们提出,多巴胺对于应对关于刺激结果的低水平预测误差至关重要,而这种预测误差需要运动灵活性。