Marshall Louise, Mathys Christoph, Ruge Diane, de Berker Archy O, Dayan Peter, Stephan Klaas E, Bestmann Sven
Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom.
Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom.
PLoS Biol. 2016 Nov 15;14(11):e1002575. doi: 10.1371/journal.pbio.1002575. eCollection 2016 Nov.
Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses.
与环境的成功互动需要灵活更新我们对世界的信念。通过估计未来事件的可能性,人们能够提前准备适当的行动并做出快速、准确的运动反应。根据理论推测,主体通过计算各种形式的不确定性来追踪不断变化的环境中产生的变异性。几种神经调质已被证明与不确定性信号有关,但它们对感知信念更新以及运动反应选择的相对贡献缺乏全面的实证描述。在此,我们在一个统一的不确定性计算框架内评估去甲肾上腺素、乙酰胆碱和多巴胺的作用。我们对128名健康人类志愿者进行药物干预,并使用分层贝叶斯学习模型,来描述在概率性序列反应时任务中,去甲肾上腺素能、胆碱能和多巴胺能受体拮抗作用对个体不确定性计算的影响。我们认为,去甲肾上腺素影响对环境意外变化所产生的不确定事件的学习。相比之下,乙酰胆碱在由一组稳定的概率关联所定义的环境背景下,平衡不确定性归因于偶然波动,或归因于情境转换后的重大环境违规。多巴胺支持利用不确定性表征来产生快速、适应性的反应。