Subbotin Roman I, Chait Brian T
From the ‡The Rockefeller University 1230 York Ave, New York, New York.
From the ‡The Rockefeller University 1230 York Ave, New York, New York
Mol Cell Proteomics. 2014 Nov;13(11):2824-35. doi: 10.1074/mcp.M114.041095. Epub 2014 Aug 29.
It remains extraordinarily challenging to elucidate endogenous protein-protein interactions and proximities within the cellular milieu. The dynamic nature and the large range of affinities of these interactions augment the difficulty of this undertaking. Among the most useful tools for extracting such information are those based on affinity capture of target bait proteins in combination with mass spectrometric readout of the co-isolated species. Although highly enabling, the utility of affinity-based methods is generally limited by difficulties in distinguishing specific from nonspecific interactors, preserving and isolating all unique interactions including those that are weak, transient, or rapidly exchanging, and differentiating proximal interactions from those that are more distal. Here, we have devised and optimized a set of methods to address these challenges. The resulting pipeline involves flash-freezing cells in liquid nitrogen to preserve the cellular environment at the moment of freezing; cryomilling to fracture the frozen cells into intact micron chunks to allow for rapid access of a chemical reagent and to stabilize the intact endogenous subcellular assemblies and interactors upon thawing; and utilizing the high reactivity of glutaraldehyde to achieve sufficiently rapid stabilization at low temperatures to preserve native cellular interactions. In the course of this work, we determined that relatively low molar ratios of glutaraldehyde to reactive amines within the cellular milieu were sufficient to preserve even labile and transient interactions. This mild treatment enables efficient and rapid affinity capture of the protein assemblies of interest under nondenaturing conditions, followed by bottom-up MS to identify and quantify the protein constituents. For convenience, we have termed this approach Stabilized Affinity Capture Mass Spectrometry. Here, we demonstrate that Stabilized Affinity Capture Mass Spectrometry allows us to stabilize and elucidate local, distant, and transient protein interactions within complex cellular milieux, many of which are not observed in the absence of chemical stabilization.
在细胞环境中阐明内源性蛋白质-蛋白质相互作用和接近度仍然极具挑战性。这些相互作用的动态性质和广泛的亲和力范围增加了这项工作的难度。用于提取此类信息的最有用工具之一是基于对目标诱饵蛋白进行亲和捕获并结合对共分离物种进行质谱读出的方法。尽管基于亲和力的方法非常有用,但其效用通常受到以下困难的限制:难以区分特异性和非特异性相互作用体,难以保存和分离所有独特的相互作用,包括那些弱的、短暂的或快速交换的相互作用,以及难以区分近端相互作用和更远端的相互作用。在这里,我们设计并优化了一套方法来应对这些挑战。由此产生的流程包括:在液氮中快速冷冻细胞以在冷冻瞬间保存细胞环境;冷冻研磨将冷冻细胞破碎成完整的微米级碎片,以便化学试剂能够快速进入,并在解冻时稳定完整的内源性亚细胞组装体和相互作用体;利用戊二醛的高反应性在低温下实现足够快速的稳定,以保存天然细胞相互作用。在这项工作过程中,我们确定细胞环境中戊二醛与反应性胺的相对低摩尔比足以保存甚至是不稳定和短暂的相互作用。这种温和的处理能够在非变性条件下高效快速地亲和捕获感兴趣的蛋白质组装体,随后进行自下而上的质谱分析以鉴定和定量蛋白质成分。为方便起见,我们将这种方法称为稳定亲和捕获质谱法。在这里,我们证明稳定亲和捕获质谱法使我们能够稳定并阐明复杂细胞环境中的局部、远距离和短暂的蛋白质相互作用,其中许多在没有化学稳定作用的情况下是观察不到的。