Schmitt Thorsten, de Groot Frank M F, Rubensson Jan Erik
Research Department Synchrotron Radiation and Nanotechnology, Paul Scherrer Institut, Swiss Light Source, WSLA/123, 5232 Villigen PSI, Switzerland.
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands.
J Synchrotron Radiat. 2014 Sep;21(Pt 5):1065-76. doi: 10.1107/S1600577514017123. Epub 2014 Aug 31.
The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned.
共振非弹性X射线散射(RIXS)光谱技术将特别受益于衍射极限储存环(DLSR)显著提高的亮度。在RIXS中,人们测量激发强度作为能量和动量转移的函数。DLSR将使可实现的能量分辨率、信号强度和采样光斑尺寸达到新的极限。如今,通过RIXS可以探测从简单分子到复杂材料的广泛电子系统,这些系统表现出奇特磁性、二维电子气、超导、光伏能量转换和多相催化等现象。本文设想了利用DLSR的X射线束进行的改进型RIXS研究类型。