Antunes Duarte, Singh Abhyudai
Control Systems Technology, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands,
J Math Biol. 2015 Aug;71(2):437-63. doi: 10.1007/s00285-014-0811-x. Epub 2014 Sep 3.
The level of a given mRNA or protein exhibits significant variations from cell-to-cell across a homogeneous population of living cells. Much work has focused on understanding the different sources of noise in the gene-expression process that drive this stochastic variability in gene-expression. Recent experiments tracking growth and division of individual cells reveal that cell division times have considerable inter-cellular heterogeneity. Here we investigate how randomness in the cell division times can create variability in population counts. We consider a model by which mRNA/protein levels in a given cell evolve according to a linear differential equation and cell divisions occur at times spaced by independent and identically distributed random intervals. Whenever the cell divides the levels of mRNA and protein are halved. For this model, we provide a method for computing any statistical moment (mean, variance, skewness, etcetera) of the mRNA and protein levels. The key to our approach is to establish that the time evolution of the mRNA and protein statistical moments is described by an upper triangular system of Volterra equations. Computation of the statistical moments for physiologically relevant parameter values shows that randomness in the cell division process can be a major factor in driving difference in protein levels across a population of cells.
在一群同质的活细胞中,给定mRNA或蛋白质的水平在细胞间存在显著差异。许多工作都集中在理解基因表达过程中导致这种基因表达随机变异性的不同噪声来源上。最近追踪单个细胞生长和分裂的实验表明,细胞分裂时间存在相当大的细胞间异质性。在这里,我们研究细胞分裂时间的随机性如何在群体数量中产生变异性。我们考虑一个模型,其中给定细胞中的mRNA/蛋白质水平根据线性微分方程演化,并且细胞分裂发生在由独立同分布的随机间隔隔开的时间点。每当细胞分裂时,mRNA和蛋白质的水平减半。对于这个模型,我们提供了一种计算mRNA和蛋白质水平的任何统计矩(均值、方差、偏度等)的方法。我们方法的关键是确定mRNA和蛋白质统计矩的时间演化由一个沃尔泰拉方程的上三角系统描述。对生理相关参数值的统计矩计算表明,细胞分裂过程中的随机性可能是导致细胞群体中蛋白质水平差异的一个主要因素。