Suppr超能文献

基于扩散加权成像的神经指纹识别技术:中风分析的初步研究。

DWI-based neural fingerprinting technology: a preliminary study on stroke analysis.

作者信息

Ye Chenfei, Ma Heather Ting, Wu Jun, Yang Pengfei, Chen Xuhui, Yang Zhengyi, Ma Jingbo

机构信息

Department of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen Graduate School, HIT Campus, University Town, Room 205C, C Building, Xili, Nanshan, Shenzhen 518055, China.

Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 18036, China.

出版信息

Biomed Res Int. 2014;2014:725052. doi: 10.1155/2014/725052. Epub 2014 Aug 12.

Abstract

Stroke is a common neural disorder in neurology clinics. Magnetic resonance imaging (MRI) has become an important tool to assess the neural physiological changes under stroke, such as diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI). Quantitative analysis of MRI images would help medical doctors to localize the stroke area in the diagnosis in terms of structural information and physiological characterization. However, current quantitative approaches can only provide localization of the disorder rather than measure physiological variation of subtypes of ischemic stroke. In the current study, we hypothesize that each kind of neural disorder would have its unique physiological characteristics, which could be reflected by DWI images on different gradients. Based on this hypothesis, a DWI-based neural fingerprinting technology was proposed to classify subtypes of ischemic stroke. The neural fingerprint was constructed by the signal intensity of the region of interest (ROI) on the DWI images under different gradients. The fingerprint derived from the manually drawn ROI could classify the subtypes with accuracy 100%. However, the classification accuracy was worse when using semiautomatic and automatic method in ROI segmentation. The preliminary results showed promising potential of DWI-based neural fingerprinting technology in stroke subtype classification. Further studies will be carried out for enhancing the fingerprinting accuracy and its application in other clinical practices.

摘要

中风是神经科门诊常见的神经疾病。磁共振成像(MRI)已成为评估中风情况下神经生理变化的重要工具,如扩散加权成像(DWI)和扩散张量成像(DTI)。MRI图像的定量分析有助于医生根据结构信息和生理特征在诊断中定位中风区域。然而,目前的定量方法只能提供疾病的定位,而无法测量缺血性中风亚型的生理变化。在本研究中,我们假设每种神经疾病都有其独特的生理特征,这可以通过不同梯度的DWI图像反映出来。基于这一假设,提出了一种基于DWI的神经指纹技术来对缺血性中风亚型进行分类。神经指纹由不同梯度下DWI图像上感兴趣区域(ROI)的信号强度构建而成。从手动绘制的ROI得出的指纹能够以100%的准确率对亚型进行分类。然而,在ROI分割中使用半自动和自动方法时,分类准确率较低。初步结果显示基于DWI的神经指纹技术在中风亚型分类中具有广阔的应用前景。将开展进一步研究以提高指纹识别准确率及其在其他临床实践中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58f3/4145738/3bb0cc3161a4/BMRI2014-725052.001.jpg

相似文献

1
DWI-based neural fingerprinting technology: a preliminary study on stroke analysis.
Biomed Res Int. 2014;2014:725052. doi: 10.1155/2014/725052. Epub 2014 Aug 12.
2
A preliminary study of DTI Fingerprinting on stroke analysis.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2380-3. doi: 10.1109/EMBC.2014.6944100.
3
An automatic machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging.
Neuroimage Clin. 2021;31:102744. doi: 10.1016/j.nicl.2021.102744. Epub 2021 Jul 3.
5
Transient ischemic attack and stroke can be differentiated by analyzing early diffusion-weighted imaging signal intensity changes.
Stroke. 2004 May;35(5):1095-9. doi: 10.1161/01.STR.0000125720.02983.fe. Epub 2004 Apr 1.
6
Early new diffusion-weighted imaging lesions appear more often in stroke patients with a multiple territory lesion pattern.
Stroke. 2013 Aug;44(8):2200-4. doi: 10.1161/STROKEAHA.111.000810. Epub 2013 Jun 13.
7
Mapping a Reliable Stroke Onset Time Course Using Signal Intensity on DWI Scans.
J Neuroimaging. 2019 Jul;29(4):476-480. doi: 10.1111/jon.12616. Epub 2019 Apr 1.

本文引用的文献

1
Magnetic resonance fingerprinting.
Nature. 2013 Mar 14;495(7440):187-92. doi: 10.1038/nature11971.
2
Tract based spatial statistical analysis and voxel based morphometry of diffusion indices in temporal lobe epilepsy.
Comput Biol Med. 2011 Dec;41(12):1082-91. doi: 10.1016/j.compbiomed.2011.05.006. Epub 2011 May 25.
3
Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template.
Neuroimage. 2008 Apr 1;40(2):570-582. doi: 10.1016/j.neuroimage.2007.12.035. Epub 2008 Jan 3.
5
Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants.
Neuroimage. 2007 Apr 15;35(3):1021-7. doi: 10.1016/j.neuroimage.2007.01.035. Epub 2007 Feb 8.
6
Disruption of hippocampal connectivity in children and adolescents with schizophrenia--a voxel-based diffusion tensor imaging study.
Schizophr Res. 2007 Feb;90(1-3):302-7. doi: 10.1016/j.schres.2006.09.032. Epub 2006 Dec 1.
7
Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data.
Neuroimage. 2006 Jul 15;31(4):1487-505. doi: 10.1016/j.neuroimage.2006.02.024. Epub 2006 Apr 19.
8
DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking.
Comput Methods Programs Biomed. 2006 Feb;81(2):106-16. doi: 10.1016/j.cmpb.2005.08.004. Epub 2006 Jan 18.
10
A review of structural magnetic resonance neuroimaging.
J Neurol Neurosurg Psychiatry. 2004 Sep;75(9):1235-44. doi: 10.1136/jnnp.2003.032714.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验